Suppression of 3D-ordering by defects in the $S=1/2$ frustrated chain magnet LiCuVO$_4$


Abstract in English

We report on a heat capacity study of high quality single crystal samples of lcvo -- a frustrated spin $S=1/2$ chain system -- in magnetic field amounting to 3/4 of the saturation field. At low fields up to about 7~T, a linear temperature dependence of the specific heat, $C_ppropto T$, resulting from 1D magnetic correlations in the spin chains is followed upon cooling by a sharp lambda anomaly of the transition into a 3D helical phase with $C_ppropto T^3$ behavior at low temperature. The transition from a spin liquid into a spin-modulated (SM) phase at higher fields occurs via a hump-like anomaly which, as the temperature decreases further turns into a $C_ppropto T^2$ law distinctive for a quasi-2D system. We suggest an explanation for how nonmagnetic defects in the Cu$^{2+}$ chains can suppress 3D long-range ordering in the SM phase and leave it undisturbed in a helical phase.

Download