Do you want to publish a course? Click here

The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei, and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

337   0   0.0 ( 0 )
 Added by Jonathan Trump
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that star formation dilution by HII regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically-motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent Lbol/L[OIII] bolometric correction, and the observed Mbh-sigma relation. These simulations indicate that, in massive (log(M*/Msun) > 10) galaxies, AGN accretion is correlated with specific star formation rate but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass (log(M*/Msun) < 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of star formation dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [OIII] and Ha) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, star formation rates, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of star formation quenching in galaxies, but instead are fueled by the same gas which drives star formation activity.



rate research

Read More

Black hole accretion is widely thought to influence star formation in galaxies, but the empirical evidence for a physical correlation between star formation rate (SFR) and the properties of active galactic nuclei (AGNs) remains highly controversial. We take advantage of a recently developed SFR estimator based on the [O II] $lambda3727$ and [O III] $lambda5007$ emission lines to investigate the SFRs of the host galaxies of more than 5,800 type 1 and 7,600 type 2 AGNs with $z < 0.35$. After matching in luminosity and redshift, we find that type 1 and type 2 AGNs have a similar distribution of internal reddening, which is significant and corresponds to $sim 10^9,M_odot$ of cold molecular gas. In spite of their comparable gas content, type 2 AGNs, independent of stellar mass, Eddington ratio, redshift or molecular gas mass, exhibit intrinsically stronger star formation activity than type 1 AGNs, in apparent disagreement with the conventional AGN unified model. We observe a tight, linear relation between AGN luminosity (accretion rate) and SFR, one that becomes more significant toward smaller physical scales, suggesting that the link between the AGN and star formation occurs in the central kpc-scale region. This, along with a correlation between SFR and Eddington ratio in the regime of super-Eddington accretion, can be interpreted as evidence that star formation is impacted by positive feedback from the AGN.
We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with $10^{41}<L_mathrm{X}<10^{44} $ erg s$^{-1}$ at $0.2 < z < 1.2$ in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given $L_X$. We do not find a significant correlation between SFR and the observed instantaneous $L_X$ for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean $L_mathrm{X}$ and SFR of detected AGN in star forming galaxies, which likely reflects that $L_mathrm{X}$ varies on shorter timescales than SFR. We find no correlation between stellar mass and $L_mathrm{X}$ within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy $sim2-3$ more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies.
116 - J. Shen 2007
We have measured the stellar velocity dispersions (sigma_*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z=0.452, high quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M_BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses are correlated with both the host luminosities (L_{H}) and the stellar velocity dispersions (sigma_*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatter in the correlations are large (~0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M_BH ~ L_H^{0.73+-0.05} and M_BH ~ sigma_*^{3.34+-0.24}. The amplitude of the M_BH-sigma_* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion.
226 - Paul M. ONeill 2005
We have investigated the relationship between the 2-10 keV X-ray variability amplitude and black hole mass for a sample of 46 radio-quiet active galactic nuclei observed by ASCA. Thirty-three of the objects in our sample exhibited variability over a time-scale of ~40 ks, and we found a significant anti-correlation between excess variance and mass. Unlike most previous studies, we have quantified the variability using nearly the same time-scale for all objects. Moreover, we provide a prescription for estimating the uncertainties in excess variance which accounts both for measurement uncertainties and for the stochastic nature of the variability. We also present an analytical method to predict the excess variance from a model power spectrum accounting for binning, sampling and windowing effects. Using this, we modelled the variance-mass relation assuming all objects have a universal twice-broken power spectrum, with the position of the breaks being dependent on mass. This accounts for the general form of the relationship but there is considerable scatter. We investigated this scatter as a function of the X-ray photon index, luminosity and Eddington ratio. After accounting for the dependence of excess variance on mass, we find no significant correlation with either luminosity or X-ray spectral slope. We do find an anti-correlation between excess variance and the Eddington ratio, although this relation might be an artifact owing to the uncertainties in the mass measurements. It remains to be established that enhanced X-ray variability is a property of objects with steep X-ray slopes or large Eddington ratios.
This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at $z sim 1.5$, selected to cover a large range in black hole mass ($M_{BH}$) and Eddington ratio ($L/L_{Edd}$). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved $M_{BH}$ estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter ($a_*$) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from $sim$$-$0.6 to maximum spin for our sample, and our results are consistent with the spin-up scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا