On the Formation of Ultraluminous X-ray Sources with Neutron Star Accretors: the Case of M82 X-2


Abstract in English

The recent discovery of a neutron star accretor in the ultra-luminous X-ray source M82 X-2 challenges our understanding of high-mass X-ray binary formation and evolution. By combining binary population synthesis and detailed mass-transfer models, however, we show that the binary parameters of M82 X-2 are not surprising provided non-conservative mass transfer is allowed. Specifically, the donor-mass lower limit and orbital period measured for M82 X-2 lie near the most probable values predicted by population synthesis models, and systems such as M82 X-2 should exist in approximately 13% of the galaxies with a star-formation history similar to M82. We conclude that the binary system that formed M82 X-2 is most likely less than 50 Myr old and contains a donor star which had an initial mass of approximately 8-10 M$_odot$, while the NSs progenitor star had an initial mass in the $8-25,rm M_{odot}$ range. The donor star still currently resides on the main sequence, and is capable of continued MT on the thermal timescale, while in the ultra-luminous X-ray regime, for as long as 400,000 years.

Download