Do you want to publish a course? Click here

Demonstration of a Near-IR Laser Comb for Precision Radial Velocity Measurements in Astronomy

127   0   0.0 ( 0 )
 Added by Chas Beichman
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a successful effort to produce a laser comb around 1.55 $mu$m in the astronomical H band using a method based on a line-referenced, electro-optical-modulation frequency comb. We discuss the experimental setup, laboratory results, and proof of concept demonstrations at the NASA Infrared Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a demonstrated stability of $<$ 200 kHz, corresponding to a Doppler precision of ~0.3 m/s. This technology, when coupled with a high spectral resolution spectrograph, offers the promise of $<$1 m/s radial velocity precision suitable for the detection of Earth-sized planets in the habitable zones of cool M-type stars.



rate research

Read More

Envisioning more compact and cost accessible astronomical instruments is now possible with existing photonic technologies like specialty optical fibres, photonic lanterns and ultrafast laser inscribed chips. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling effciency of a multimode fibre, modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far field output illumination pattern despite input coupling variations, and low modal noise for increased photometric stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.
We discuss the laser frequency comb as a near infrared astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.
We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 14NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain focus. Our results demonstrate the feasibility of using a gas cell on the next generation of near-infrared spectrographs such as iSHELL on IRTF, iGRINS, and an upgraded NIRSPEC at Keck.
Adaptive optics (AO) have been used to correct wavefronts to achieve diffraction limited point spread functions in a broad range of optical applications, prominently ground-based astronomical telescopes operating in near infra-red. While most AO systems cannot provide diffraction-limited performance in the optical passband (400 nm - 900 nm), AO can improve image concentration, as well as both near and far field image stability, within an AO-fed spectrograph. Enhanced near and far field stability increase wavelength-scale stability in high dispersion spectrographs. In this work, we describe detailed modelling of the stability improvements achievable on extremely large telescopes. These improvements in performance may enable the mass measurement of Earth Twins by the precision radial velocity method, and the discovery of evidence of exobiotic activity in exoplanet atmospheres with the next generation of extremely large telescopes (ELTs). In this paper, we report on numerical simulations of the impact of AO on the performance of the GMT-Consortium Large Earth Finder (G-CLEF) instrument for the future Giant Magellan Telescope (GMT). The proximate cause of this study is to evaluate what improvements AO offer for exoplanet mass determination by the precision radial velocity (PRV) method and the discovery of biomarkers in exoplanet atmospheres. A modified AO system capable of achieving this improved stability even with changing conditions is proposed.
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10cm/s sensitivity required for the detection and characterization of terrestrial exoplanets in or near Habitable Zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID precision RV instrument for the WIYN 3.5m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while bright time has been traditionally adequate for RV science, the goal of 10cm/s precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا