Do you want to publish a course? Click here

Finsler-like structures from Lorentz-breaking classical particles

205   0   0.0 ( 0 )
 Added by Neil Russell
 Publication date 2015
  fields
and research's language is English
 Authors Neil Russell




Ask ChatGPT about the research

A method is presented for deducing classical point-particle Lagrange functions corresponding to a class of quartic dispersion relations. Applying this to particles violating Lorentz symmetry in the minimal Standard-Model Extension leads to a variety of novel lagrangians in flat spacetime. Morphisms in these classical systems are studied that echo invariance under field redefinitions in the quantized theory. The Lagrange functions found offer new possibilities for understanding Lorentz-breaking effects by exploring parallels with Finsler-like geometries.



rate research

Read More

We consider some aspects of spontaneous breaking of Lorentz Invariance in field theories, discussing the possibility that the certain tensor operators may condensate in the ground state in which case the tensor Goldstone particles would appear. We analyze their dynamics and discuss to which extent such a theory could imitate the gravity. We are also interested if the universality of coupling of such `gravitons with other particles can be achieved in the infrared limit. Then we address the more complicated models when such tensor Goldstones coexist with the usual geometrical gravitons. At the end we examine the properties of possible cosmological scenarios in the case of goldstone gravity coexisting with geometrical gravity.
189 - Alan Kostelecky , Neil Russell , 2012
Bipartite Riemann-Finsler geometries with complementary Finsler structures are constructed. Calculable examples are presented based on a bilinear-form coefficient for explicit Lorentz violation.
111 - Robertus Potting 2009
We present a model of gravity based on spontaneous Lorentz symmetry breaking. We start from a model with spontaneously broken symmetries for a massless 2-tensor with a linear kinetic term and a nonderivative potential, which is shown to be equivalent to linearized general relativity, with the Nambu-Goldstone (NG) bosons playing the role of the gravitons. We apply a bootstrap procedure to the model based on the principle of consistent coupling to the total energy energy-momentum tensor. Demanding consistent application of the bootstrap to the potential term severely restricts the form of the latter. Nevertheless, suitable potentials exists that permit stable vacua. It is shown that the resulting model is equivalent, at low energy, to General Relativity in a fixed gauge.
The correspondence between Riemann-Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz-violating operators of arbitrary mass dimension. Classical relativistic point-particle lagrangians are derived that reproduce the momentum-velocity and dispersion relations of quantum wave packets. The correspondence to Finsler structures is established, and some properties of the resulting Riemann-Finsler spaces are investigated. The results provide support for open conjectures about Riemann-Finsler geometries associated with Lorentz-violating field theories.
In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا