Do you want to publish a course? Click here

Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model

129   0   0.0 ( 0 )
 Added by Himangsu Bhaumik
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the rotational sandpile model, either the clockwise or the anti-clockwise toppling rule is assigned to all the lattice sites. It has all the features of a stochastic sandpile model but belongs to a different universality class than the Manna class. A crossover from rotational to Manna universality class is studied by constructing a random rotational sandpile model and assigning randomly clockwise and anti-clockwise rotational toppling rules to the lattice sites. The steady state and the respective critical behaviour of the present model are found to have a strong and continuous dependence on the fraction of the lattice sites having the anti-clockwise (or clockwise) rotational toppling rule. As the anti-clockwise and clockwise toppling rules exist in equal proportions, it is found that the model reproduces critical behaviour of the Manna model. It is then further evidence of the existence of the Manna class, in contradiction with some recent observations of the non-existence of the Manna class.



rate research

Read More

A new classification of sandpile models into universality classes is presented. On the basis of extensive numerical simulations, in which we measure an extended set of exponents, the Manna two state model [S. S. Manna, J. Phys. A 24, L363 (1991)] is found to belong to a universality class of random neighbor models which is distinct from the universality class of the original model of Bak, Tang and Wiesenfeld [P. Bak, C. Tang and K. Wiensenfeld, Phys. Rev. Lett. 59, 381 (1987)]. Directed models are found to belong to a universality class which includes the directed model introduced and solved by Dhar
A dissipative stochastic sandpile model is constructed on one and two dimensional small-world networks with different shortcut densities $phi$ where $phi=0$ and $1$ represent a regular lattice and a random network respectively. In the small-world regime ($2^{-12} le phi le 0.1$), the critical behaviour of the model is explored studying different geometrical properties of the avalanches as a function of avalanche size $s$. For both the dimensions, three regions of $s$, separated by two crossover sizes $s_1$ and $s_2$ ($s_1<s_2$), are identified analyzing the scaling behaviour of average height and area of the toppling surface associated with an avalanche. It is found that avalanches of size $s<s_1$ are compact and follow Manna scaling on the regular lattice whereas the avalanches with size $s>s_1$ are sparse as they are on network and follow mean-field scaling. Coexistence of different scaling forms in the small-world regime leads to violation of usual finite-size scaling, in contrary to the fact that the model follows the same on the regular lattice as well as on the random network independently. Simultaneous appearance of multiple scaling forms are characterized by developing a coexistence scaling theory. As SWN evolves from regular lattice to random network, a crossover from diffusive to super-diffusive nature of sand transport is observed and scaling forms of such crossover is developed and verified.
92 - Seungki Kim , Yuntao Wang 2019
We introduce a natural stochastic extension, called SSP, of the abelian sandpile model(ASM), which shares many mathematical properties with ASM, yet radically differs in its physical behavior, for example in terms of the shape of the steady state and of the avalanche size distribution. We establish a basic theory of SSP analogous to that of ASM, and present a brief numerical study of its behavior. Our original motivation for studying SSP stems from its connection to the LLL algorithm established in another work by the authors [5]. The importance of understanding how LLL works cannot be stressed more, especially from the point of view of lattice-based cryptography. We believe SSP serves as a tractable toy model of LLL that would help further our understanding of it.
121 - Tridib Sadhu , Deepak Dhar 2008
We study the steady state of the abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their abelian algebra to determine their eigenvalues, and the Jordan block structure. These are then used to determine the probability of different configurations in the steady state. We illustrate this procedure by explicitly determining the numerically exact steady state for a one dimensional example, for systems of size $le12$, and also study the density profile in the steady state.
A two state sandpile model with preferential sand distribution is developed and studied numerically on scale free networks with power-law degree ($k$) distribution, {em i.e.}: $P_ksim k^{-alpha}$. In this model, upon toppling of a critical node sand grains are given one to each of the neighbouring nodes with highest and lowest degrees instead of two randomly selected neighbouring nodes as in a stochastic sandpile model. The critical behaviour of the model is determined by characterizing various avalanche properties at the steady state varying the network structure from scale free to random, tuning $alpha$ from $2$ to $5$. The model exhibits mean field scaling on the random networks, $alpha>4$. However, in the scale free regime, $2<alpha<4$, the scaling behaviour of the model not only deviates from the mean-field scaling but also the exponents describing the scaling behaviour are found to decrease continuously as $alpha$ decreases. In this regime, the critical exponents of the present model are found to be different from those of the two state stochastic sandpile model on similar networks. The preferential sand distribution thus has non-trivial effects on the sandpile dynamics which leads the model to a new universality class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا