The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Keplers golden stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $f(R,T)$ theory of gravity to study strange quark stars. The $f(R,T)$ theory is important, especially in cosmology, because it solves certain incompleteness of the standard model. In general, there is no intrinsic conservation of the energy-momentum tensor in the $f(R,T)$ gravity. Since this conservation is important in the astrophysical context, we impose the condition $ abla T_{mu u}=0$, so that we obtain a function $f(R,T)$ that implies conservation. This choice of a function $f(R,T)$ that conserves the momentum-energy tensor gives rise to a strong link between gravity and the microphysics of the compact object. We obtain the TOV by taking into account a linear equation of state to describe the matter inside strange stars, such as $p=omegarho$ and the MIT bag model $p=omega(rho-4B)$. With these assumptions it was possible to derive macroscopic properties of these objects.
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic fluctuations. We identify a criterion, for the appearance of such non-linear terms. This depends on whether an invariant, symmetric tensor of the algebra can vanish or not. This proposal is studied in detail for the fundamental representation of $mathfrak{u}(2)$. We find a knotted structure for the attractor, a bimodal distribution for the largest Lyapunov exponent and that the dynamics takes place within the Cartan subalgebra, that does not contain only the identity matrix, thereby can describe the quantum fluctuations.
We investigate experimentally the mixing dynamics in a channel flow with a finite stirring region undergoing chaotic advection. We study the homogenization of dye in two variants of an eggbeater stirring protocol that differ in the extent of their mixing region. In the first case, the mixing region is separated from the side walls of the channel, while in the second it extends to the walls. For the first case, we observe the onset of a permanent concentration pattern that repeats over time with decaying intensity. A quantitative analysis of the concentration field of dye confirms the convergence to a self-similar pattern, akin to the strange eigenmodes previously observed in closed flows. We model this phenomenon using an idealized map, where an analysis of the mixing dynamics explains the convergence to an eigenmode. In contrast, for the second case the presence of no-slip walls and separation points on the frontier of the mixing region leads to non-self-similar mixing dynamics.
We compute numerical models of uniformly rotating strange stars (SS) in general relativity for the recently proposed QCD-based equation of state (EOS) of strange quark matter (Dey et al. 1998). Static models based on this EOS are characterised by a larger surface redshift than strange stars within the MIT bag model. The frequencies of the fastest rotating configurations described by Dey model are much higher than these for neutron stars (NS) and for the simplest SS MIT bag model. We determine a number of physical parameters for such stars and compare them with those obtained for NS. We construct constant baryon mass equilibrium sequences both normal and supramassive. Similarly to the NS a supramassive SS, prior to collapse to a black hole, spins up as it loses angular momentum. We find the upper limits on maximal masses and maximal frequencies of the rotating configurations. We show that the maximal rotating frequency for each of considered evolutionary sequences is never the Keplerian one. A normal and low mass supramassive strange stars gaining angular momentum always slows down just before reaching the Keplerian limit. For a high mass supramassive SS sequence the Keplerian configuration is the one with the lowest rotational frequency in the sequence. The value of $T/W$ for rapidly rotating SS of any mass is significantly higher than those for ordinary NS. For Keplerian configurations it increases as mass decreases. The results are robust for all linear self-bound equations of state.
We study the spatial spread of out-of-time-ordered correlators (OTOCs) in coupled map lattices (CMLs) of quasiperiodically forced nonlinear maps. We use instantaneous speed (IS) and finite-time Lyapunov exponents (FTLEs) to investigate the role of strange non-chaotic attractors (SNAs) on the spatial spread of the OTOC. We find that these CMLs exhibit a characteristic on and off type of spread of the OTOC for SNA. Further, we provide a broad spectrum of the various dynamical regimes in a two-parameter phase diagram using IS and FTLEs. We substantiate our results by confirming the presence of SNA using established tools and measures, namely the distribution of finite-time Lyapunov exponents, phase sensitivity, spectrum of partial Fourier sums, and $0-1$ test.