Do you want to publish a course? Click here

Galaxy Formation & Dark Matter Modelling in the Era of the Square Kilometre Array

104   0   0.0 ( 0 )
 Added by Chris Power
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Theoretical galaxy formation models are an established and powerful tool for interpreting the astrophysical significance of observational data, particularly galaxy surveys. Such models have been utilised with great success by optical surveys such as 2dFGRS and SDSS, but their application to radio surveys of cold gas in galaxies has been limited. In this chapter we describe recent developments in the modelling of the cold gas properties in the models, and how these developments are essential if they are to be applied to cold gas surveys of the kind that will be carried out with the SKA. By linking explicitly a galaxys star formation rate to the abundance of molecular hydrogen in the galaxy rather than cold gas abundance, as was assumed previously, the latest models reproduce naturally many of the global atomic and molecular hydrogen properties of observed galaxies. We review some of the key results of the latest models and highlight areas where further developments are necessary. We discuss also how model predictions can be most accurately compared with observational data, what challenges we expect when creating synthetic galaxy surveys in the SKA era, and how the SKA can be used to test models of dark matter.



rate research

Read More

142 - Chris Simpson 2017
The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined.
Theoretical uncertainties on non-linear scales are among the main obstacles to exploit the sensitivity of forthcoming galaxy and hydrogen surveys like Euclid or the Square Kilometre Array (SKA). Here, we devise a new method to model the theoretical error that goes beyond the usual cut-off on small scales. The advantage of this more efficient implementation of the non-linear uncertainties is tested through a Markov-Chain-Monte-Carlo (MCMC) forecast of the sensitivity of Euclid and SKA to the parameters of the standard $Lambda$CDM model, including massive neutrinos with total mass $M_ u$, and to 3 extended scenarios, including 1) additional relativistic degrees of freedom ($Lambda$CDM + $M_ u$ + $N_mathrm{eff}$), 2) a deviation from the cosmological constant ($Lambda$CDM + $M_ u$ + $w_0$), and 3) a time-varying dark energy equation of state parameter ($Lambda$CDM + $M_ u$ + $left(w_0,w_a right)$). We compare the sensitivity of 14 different combinations of cosmological probes and experimental configurations. For Euclid combined with Planck, assuming a plain cosmological constant, our method gives robust predictions for a high sensitivity to the primordial spectral index $n_{rm s}$ ($sigma(n_s)=0.00085$), the Hubble constant $H_0$ ($sigma(H_0)=0.141 , {rm km/s/Mpc}$), the total neutrino mass $M_ u$ ($sigma(M_ u)=0.020 , {rm eV}$). Assuming dynamical dark energy we get $sigma(M_ u)=0.030 , {rm eV}$ for the mass and $(sigma(w_0), sigma(w_a)) = (0.0214, 0.071)$ for the equation of state parameters. The predicted sensitivity to $M_ u$ is mostly stable against the extensions of the cosmological model considered here. Interestingly, a significant improvement of the constraints on the extended model parameters is also obtained when combining Euclid with a low redshift HI intensity mapping survey by SKA1, demonstrating the importance of the synergy of Euclid and SKA.
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We explain how Phase-2 SKA (SKA2) will transform the research scope of the SKA infrastructure, placing it amongst the great astronomical observatories and survey instruments of the future, and opening up new areas of discovery, many beyond the confines of conventional astronomy.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا