No Arabic abstract
In this paper we prove new classification results for nonnegatively curved gradient expanding and steady Ricci solitons in dimension three and above, under suitable integral assumptions on the scalar curvature of the underlying Riemannian manifold. In particular we show that the only complete expanding solitons with nonnegative sectional curvature and integrable scalar curvature are quotients of the Gaussian soliton, while in the steady case we prove rigidity results under sharp integral scalar curvature decay. As a corollary, we obtain that the only three dimensional steady solitons with less than quadratic volume growth are quotients of $mathbb{R}timesSigma^{2}$, where $Sigma^{2}$ is Hamiltons cigar.
We show that the scalar curvature of a steady gradient Ricci soliton satisfying that the ratio between the square norm of the Ricci tensor and the square of the scalar curvature is bounded by one half, is boundend from below by the hyperbolic secant of one half the distance function from a fixed point.
We use the theory of isoparametric functions to investigate gradient Ricci solitons with constant scalar curvature. We show rigidity of gradient Ricci solitons with constant scalar curvature under some conditions on the Ricci tensor, which are all satisfied if the manifold is curvature homogeneous. This leads to a complete description of four- and six-dimensional Kaehler gradient Ricci solitons with constant scalar curvature.
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($nge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradient steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.
A Ricci soliton $(M,g,v,lambda)$ on a Riemannian manifold $(M,g)$ is said to have concurrent potential field if its potential field $v$ is a concurrent vector field. Ricci solitons arisen from concurrent vector fields on Riemannian manifolds were studied recently in cite{CD2}. The most important concurrent vector field is the position vector field on Euclidean submanifolds. In this paper we completely classify Ricci solitons on Euclidean hypersurfaces arisen from the position vector field of the hypersurfaces.
For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.