Do you want to publish a course? Click here

Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

123   0   0.0 ( 0 )
 Added by Vytautas Butkus
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The energy transfer processes and coherent phenomena in the fucoxanthin-chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on the femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of ${rm Q}_{y}$ transitions of chlorophylls $a$ and $c$. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) $a$ and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the ${rm Q}_{y}$ transition of Chl $c$ revealed previously not identified mutually non-interacting chlorophyll $c$ states participating in femtosecond or picosecond energy transfer to the Chl $a$ molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl $c$ and Chl $a$ and the overall spatial arrangement of chlorophyll molecules.



rate research

Read More

The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion (HEOM) approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.
Quantum beats in nonlinear spectroscopy of molecular aggregates are often attributed to electronic phenomena of excitonic systems, while nuclear degrees of freedom are commonly included into models as overdamped oscillations of bath constituents responsible for dephasing. However, molecular systems are coupled to various high-frequency molecular vibrations, which can cause the spectral beats hardly distinguishable from those created by purely electronic coherences. Models containing damped, undamped and overdamped vibrational modes coupled to an electronic molecular transition are discussed in this paper in context of linear absorption and two-dimensional electronic spectroscopy. Analysis of different types of bath models demonstrates how do vibrations map onto two-dimensional spectra and how the damping strength of the coherent vibrational modes can be resolved from spectroscopic signals.
A necessary first step in the development of technologies such as artificial photosynthesis is understanding the photoexcitation process within the basic building blocks of naturally-occurring light harvesting complexes (LHCs). The most important of these building blocks in biological LHCs such as LHC II from green plants are the chlorophyll $a$ (Chl $a$) and chlorophyll $b$ (Chl $b$) chromophores dispersed throughout the protein matrix. However, efforts to describe such systems are still hampered by the lack of computationally efficient and accurate methods that are able to describe optical absorption in large biomolecules. In this work we employ a highly efficient linear combination of atomic orbitals (LCAOs) to represent the Kohn--Sham (KS) wave functions at the density functional theory (DFT) level and perform time dependent density functional theory (TDDFT) in either the reciprocal space and frequency domain (LCAO-TDDFT-$k$-$omega$) or real space and time (LCAO-TDDFT-$r$-$t$) calculations of the optical absorption spectra of Chl $a$ and $b$ monomers and dimers. We find our LCAO-TDDFT-$k$-$omega$ and LCAO-TDDFT-$r$-$t$ calculations reproduce results obtained with a plane wave (PW) representation of the KS wave functions (PW-TDDFT-$k$-$omega$), but with a significant reduction in computational effort. Moreover, by applying the GLLB-SC derivative discontinuity correction $Delta_x$ to the KS eigenenergies, with both LCAO-TDDFT-$k$-$omega$ and LCAO-TDDFT-$r$-$t$ methods we are able to semi-quantitatively reproduce the experimentally measured photoinduced dissociation (PID) results. This work opens the path to first principles calculations of optical excitations in macromolecular systems.
We introduce a heterodimer model in which multiple mechanisms of vibronic coupling and their impact on energy transfer can be explicitly studied. We consider vibronic coupling that arises through either Franck-Condon activity in which each site in the heterodimer has a local electron-phonon coupling and as Herzberg-Teller activity in which the transition dipole moment coupling the sites has an explicit vibrational mode-dependence. We have computed two-dimensional electronic-vibrational (2DEV) spectra for this model while varying the magnitude of these two effects and find that 2DEV spectra contain static and dynamic signatures of both types of vibronic coupling. Franck-Condon activity emerges through a change in the observed excitonic structure while Herzberg-Teller activity is evident in the appearance of significant side-band transitions that mimic the lower-energy excitonic structure. A comparison of quantum beating patterns obtained from analysis of the simulated 2DEV spectra shows that this technique can report on the mechanism of energy transfer, elucidating a means of experimentally determining the role of specific vibronic coupling mechanisms in such processes.
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا