No Arabic abstract
The rotation curve of the Galaxy is generally thought to be flat. However, using radial velocities from interstellar molecular clouds, which is common in rotation curve determination, seems to be incorrect and may lead to incorrectly inferring that the rotation curve is flat indeed. Tests basing on photometric and spectral observations of bright stars may be misleading. The rotation tracers (OB stars) are affected by motions around local gravity centers and pulsation effects seen in such early type objects. To get rid of the latter a lot of observing work must be involved. We introduce a method of studying the kinematics of the thin disc of our Galaxy outside the solar orbit in a way that avoids these problems. We propose a test based on observations of interstellar CaII H and K lines that determines both radial velocities and distances. We implemented the test using stellar spectra of thin disc stars at galactic longitudes of 135{degr} and 180{degr}. Using this method, we constructed the rotation curve of the thin disc of the Galaxy. The test leads to the obvious conclusion that the rotation curve of the thin gaseous galactic disk, represented by the CaII lines, is Keplerian outside the solar orbit rather than flat.
Aims. We study the Milky Way thin disk with the Radial Velocity Experiment (RAVE) survey. We consider the thin and thick disks as different Galactic components and present a technique to statistically disentangle the two populations. Then we focus our attention on the thin disk component. Methods. We disentangle the thin disk component from amixture of the thin and thick disks using a data set providing radial velocities, proper motions, and photometrically determined distances. Results. We present the trend of the velocity dispersions in the thin disk component of the Milky Way (MW) in the radial direction above and below the Galactic plane using data from the RAdial Velocity Experiment (RAVE). The selected sample is a limited subsample from the entire RAVE catalogue, roughly mapping up to 500 pc above and below the Galactic plane, a few degrees in azimuthal direction and covering a radial extension of 2.0 kpc around the solar position. The solar motion relative to the local standard of rest is also re-determined with the isolated thin disk component. Major results are the trend of the velocity mean and dispersion in the radial and vertical direction. In addition the azimuthal components of the solar motion relative to the local standard of rest and the velocity dispersion are discussed.
We present a new strategy for fitting the structure and kinematics of the HI in edge-on galaxies using a fit to the terminal-velocity channel maps of a HI data cube. The strategy can deal with self-absorbing HI gas and the presence of warps. The method is first tested on a series of models. We demonstrate that fitting optically thin models to real galaxies will lead to an overestimation of the thickness and velocity dispersion, and to a serious underestimation of the HI face-on column densities. We subsequently fit both self-absorption and optically thin models to the HI data of six edge-on galaxies. In three of these we have also measured the velocity dispersion. On average 27 pm 6 % of the total HI mass of edge-on galaxies is hidden by self-absorption. This implies that the HI mass, thickness and velocity dispersion of galaxies is typically underestimated in the literature.
We estimated the scale-length of the thin disc with the J and W1 magnitudes of the most probable Red Clump (RC) stars in the Galactic plane, $-0overset{^circ}.5 leq b leq +0overset{^circ}.5$, in 19 equal sized fields with consecutive Galactic longitudes which cover the interval $90^circ leq l leq 270^circ$. Our results are constrained with respect to the solar space density ($D^*=5.95$), which indicates that the radial variation of the density is lower for higher Galactocentric distances. The scale-length of the thin disc is 2 kpc for the fields in the Galactic anticentre direction or close to this direction, while it decreases continuously in the second and third quadrants reaching to a lower limit of $h$ = 1.6 kpc at the Galactic longitudes $l$ = 90$^circ$ and $l$ = 270$^circ$. The distribution of the scale-length in 19 fields is consistent with the predictions from the Galaxia model and its variation with longitude is probably due to the inhomogeneity structure of the disc caused by the accreted material or other features such as warp and flare.
Owing to their shallow stellar potential, dwarf galaxies possess thick gas disks, which makes them good candidates for studies of the galactic vertical kinematical structure. We present 21 cm line observations of the isolated nearby dwarf irregular galaxy UGCA 105, taken with the Westerbork Synthesis Radio Telescope (WSRT), and analyse the geometry of its neutral hydrogen (HI) disk and its kinematics. The galaxy shows a fragmented HI distribution. It is more extended than the optical disk, and hence allows one to determine its kinematics out to very large galacto-centric distances. The HI kinematics and morphology are well-ordered and symmetric for an irregular galaxy. The HI is sufficiently extended to observe a substantial amount of differential rotation. Moreover, UGCA 105 shows strong signatures for the presence of a kinematically anomalous gas component. Performing tilted-ring modelling by use of the least-squares fitting routine TiRiFiC, we found that the HI disk of UGCA 105 has a moderately warped and diffuse outermost part. Probing a wide range of parameter combinations, we succeeded in modelling the data cube as a disk with a strong vertical gradient in rotation velocity ($approx -60,rm km,s^{-1},kpc^{-1}$), as well as vertically increasing inwards motion ($approx -70,rm km,s^{-1},kpc^{-1}$) within the radius of the stellar disk. The inferred radial gas inflow amounts to $0.06,rm M_odot rm yr^{-1}$, which is similar to the star formation rate of the galaxy. The observed kinematics are hence compatible with direct or indirect accretion from the intergalactic medium, an extreme backflow of material that has formerly been expelled from the disk, or a combination of both.
The interaction of Galactic-Centre (GC) super bubbles (GSB) with the gaseous disc and halo of the Milky Way is investigated using radio continuum, X-ray, HI and CO line surveys. The radio North Polar Spur (NPS) constitutes the brightest eastern ridge of GSB, brightening towards the galactic plane and reaching $ l = 22deg, b = + 2deg$ at the sharpest end, where it intersects the tangential direction of the 3-kpc expanding ring and crater. Examination of the spur ridges reveals that the entire GSB, including the NPS and its counter spurs, constitutes a GC-symmetrical $Omega /$rotatebox[origin=c]{180}{$Omega$} shape. The thickness and gas density of the HI and CO discs are shown to increase sharply from the inside (lower longitude) to the outside of the 3-kpc crater. Formation of crater is explained by the sweeping of the upper layer of disc gas by the shock wave from the GC by the explosion $ sim 10 $ My ago with the emitted energy of several $10 ^ {55} $ ergs. Based on the discussion, a unified view on the structure and formation mechanism of GSB is presented.