Do you want to publish a course? Click here

Cosmic Neutron Star Merger Rate and Gravitational Waves constrained by the R Process Nucleosynthesis

176   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic evolution of the neutron star merger (NSM) rate can be deduced from the observed cosmic star formation rate. This allows to estimate the rate expected in the horizon of the gravitational wave detectors advanced Virgo and ad LIGO and to compare those rates with independent predictions. In this context, the rapid neutron capture process, or r process, can be used as a constraint assuming NSM is the main astrophysical site for this nucleosynthetic process. We compute the early cosmic evolution of a typical r process element, Europium. Eu yields from NSM are taken from recent nucleosynthesis calculations. The same approach allows to compute the cosmic rate of Core Collapse SuperNovae (CCSN) and the associated evolution of Eu. We find that the bulk of Eu observations at high iron abundance can be rather well fitted by either CCSN or NSM scenarios. However, at lower metallicity, the early Eu cosmic evolution favors NSM as the main astrophysical site for the r process. A comparison between our calculations and spectroscopic observations at very low metallicities allows to constrain the coalescence timescale in the NSM scenario to about 0.1 to 0.2 Gyr. These values are in agreement with the coalescence timescales of some observed binary pulsars. Finally, the cosmic evolution of Eu is used to put constraints on the NSM rate, the merger rate in the horizon of the gravitational wave detectors advanced Virgo/ad LIGO, as well as the expected rate of electromagnetic counterparts to mergers (kilonovae) in large near-infrared surveys.



rate research

Read More

76 - E. Pian , P. DAvanzo , S. Benetti 2017
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named macronovae or kilonovae, are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.
99 - S. Rosswog 2013
We follow the longterm evolution of the dynamic ejecta of neutron star mergers for up to 100 years and over a density range of roughly 40 orders of magnitude. We include the nuclear energy input from the freshly synthesized, radioactively decaying nuclei in our simulations and study its effects on the remnant dynamics. Although the nuclear heating substantially alters the longterm evolution, we find that running nuclear networks over purely hydrodynamic simulations (i.e. without heating) yields actually acceptable nucleosynthesis results. The main dynamic effect of the radioactive heating is to quickly smooth out inhomogeneities in the initial mass distribution, subsequently the evolution proceeds self-similarly and after 100 years the remnant still carries the memory of the initial binary mass ratio. We also explore the nucleosynthetic yields for two mass ejection channels. The dynamic ejecta very robustly produce strong r-process elements with $A > 130$ with a pattern that is essentially independent of the details of the merging system. From a simple model we find that neutrino-driven winds yield weak r-process contributions with $50 < A < 130$ whose abundance patterns vary substantially between different merger cases. This is because their electron fraction, set by the ratio of neutrino luminosities, varies considerably from case to case. Such winds do not produce any $^{56}{rm Ni}$, but a range of radioactive isotopes that are long-lived enough to produce a second, radioactively powered electromagnetic transient in addition to the macronova from the dynamic ejecta. While our wind model is very simple, it nevertheless demonstrates the potential of such neutrino-driven winds for electromagnetic transients and it motivates further, more detailed neutrino-hydrodynamic studies. The properties of the mentioned transients are discussed in more detail in a companion paper.
The astrophysical r-process site where about half of the elements heavier than iron are produced has been a puzzle for several decades. Here we discuss the role of neutron star mergers (NSMs) in the light of the first direct detection of such an event in both gravitational (GW) and electromagnetic (EM) waves. We analyse bolometric and NIR lightcurves of the first detected double neutron star merger and compare them to nuclear reaction network-based macronova models. The slope of the bolometric lightcurve is consistent with the radioactive decay of neutron star ejecta with $Y_e lesssim 0.3$ (but not larger), which provides strong evidence for an r-process origin of the electromagnetic emission. This rules out in particular nickel winds as major source of the emission. We find that the NIR lightcurves can be well fitted either with or without lanthanide-rich ejecta. Our limits on the ejecta mass together with estimated rates directly confirm earlier purely theoretical or indirect observational conclusions that double neutron star mergers are indeed a major site of cosmic nucleosynthesis. If the ejecta mass was {em typical}, NSMs can easily produce {em all} of the estimated Galactic r-process matter, and --depending on the real rate-- potentially even more. This could be a hint that the event ejected a particularly large amount of mass, maybe due to a substantial difference between the component masses. This would be compatible with the mass limits obtained from the GW-observation. The recent observations suggests that NSMs are responsible for a broad range of r-process nuclei and that they are at least a major, but likely the dominant r-process site in the Universe.
The rapid neutron-capture process, or r-process, is known to be fundamental for explaining the origin of approximately half of the A>60 stable nuclei observed in nature. In recent years nuclear astrophysicists have developed more and more sophisticated r-process models, by adding new astrophysical or nuclear physics ingredients to explain the solar system composition in a satisfactory way. Despite these efforts, the astrophysical site of the r-process remains unidentified. The composition of the neutron star outer crust material is investigated after the decompression that follows its possible ejection. The composition of the outer crust of a neutron star is estimated before and after decompression. Two different possible initial conditions are considered, namely an idealized crust composed of cold catalyzed matter and a crust initially in nuclear statistical equilibrium at temperatures around 10 GK. We show that in this second case before decompression and at temperatures typically corresponding to 8 GK, the Coulomb effect due to the high densities in the crust leads to an overall composition of the outer crust in neutron-rich nuclei with a mass distribution close to the solar system r-abundance distribution. Such distributions differ, however, from the solar one due to a systematic shift in the second peak to lower values. After decompression, the capture of the few neutrons per seed nucleus available in the hot outer crust leads to a final distribution of stable neutron-rich nuclei with a mass distribution of 80 < A < 140 nuclei in excellent agreement with the solar distribution, provided the outer crust is initially at temperatures around 8 GK and all layers of the outer crust are ejected. The decompression of the neutron star matter from the outer crust provides suitable conditions for a robust r-processing of the light species, i.e., r-nuclei with A < 140.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا