Do you want to publish a course? Click here

A nonlocal $mathbf Q$-curvature flow on a class of closed manifolds of dimension $mathbf{n geq 5}$

221   0   0.0 ( 0 )
 Added by Xuezhang Chen
 Publication date 2015
  fields
and research's language is English
 Authors Xuezhang Chen




Ask ChatGPT about the research

In this paper, we employ a nonlocal $Q$-curvature flow inspired by Gursky-Malchiodis work cite{gur_mal} to solve the prescribed $Q$-curvature problem on a class of closed manifolds: For $n geq 5$, let $(M^n,g_0)$ be a smooth closed manifold, which is not conformally diffeomorphic to the standard sphere, satisfying either Gursky-Malchiodis semipositivity hypotheses: scalar curvature $R_{g_0}>0$ and $Q_{g_0} geq 0$ not identically zero or Hang-Yangs: Yamabe constant $Y(g_0)>0$, Paneitz-Sobolev constant $q(g_0)>0$ and $Q_{g_0} geq 0$ not identically zero. Let $f$ be a smooth positive function on $M^n$ and $x_0$ be some maximum point of $f$. Suppose either (a) $n=5,6,7$ or $(M^n,g_0)$ is locally conformally flat; or (b) $n geq 8$, Weyl tensor at $x_0$ is nonzero. In addition, assume all partial derivatives of $f$ vanish at $x_0$ up to order $n-4$, then there exists a conformal metric $g$ of $g_0$ with its $Q$-curvature $Q_g$ equal to $f$. This result generalizes Escobar-Schoens work [Invent. Math. 1986] on prescribed scalar curvature problem on any locally conformally flat manifolds of positive scalar curvature.



rate research

Read More

167 - Xuezhang Chen 2014
In this paper, we establish that: Suppose a closed Riemannian manifold $(M^n,g_0)$ of dimension $geq 8$ is not locally conformally flat, then the Paneitz-Sobolev constant of $M^n$ has the property that $q(g_0)<q(S^n)$. The analogy of this result was obtained by T. Aubin in 1976 and had been used to solve the Yamabe problem on closed manifolds. As an application, the above result can be used to recover the sequential convergence of the nonlocal Q-curvature flow on closed manifolds recently introduced by Gursky-Malchiodi.
151 - Li Ma 2008
In this note, we study Q-curvature flow on $S^4$ with indefinite nonlinearity. Our result is that the prescribed Q-curvature problem on $S^4$ has a solution provided the prescribed Q-curvature $f$ has its positive part, which possesses non-degenerate critical points such that $Delta_{S^4} f ot=0$ at the saddle points and an extra condition such as a nontrivial degree counting condition.
252 - Jingyi Chen , Weiyong He 2008
We show that mean curvature flow of a compact submanifold in a complete Riemannian manifold cannot form singularity at time infinity if the ambient Riemannian manifold has bounded geometry and satisfies certain curvature and volume growth conditions .
144 - Ao Sun , Jinxin Xue 2021
This is a contribution to the program of dynamical approach to mean curvature flow initiated by Colding and Minicozzi. In this paper, we prove two main theorems. The first one is local in nature and the second one is global. In this first result, we pursue the stream of ideas of cite{CM3} and get a slight refinement of their results. We apply the invariant manifold theory from hyperbolic dynamics to study the dynamics close to a closed shrinker that is not a sphere. In the second theorem, we show that if a hypersurface under the rescaled mean curvature flow converges to a closed shrinker that is not a sphere, then a generic perturbation on initial data would make the flow leave a small neighborhood of the shrinker and never come back.
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2, 395-506, 2012) for the scalar curvature flow on the standard unit sphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا