We present a classification theorem for a class of unital simple separable amenable ${cal Z}$-stable $C^*$-algebras by the Elliott invariant. This class of simple $C^*$-algebras exhausts all possible Elliott invariant for unital stably finite simple separable amenable ${cal Z}$-stable $C^*$-algebras. Moreover, it contains all unital simple separable amenable $C^*$-alegbras which satisfy the UCT and have finite rational tracial rank.