Do you want to publish a course? Click here

Form factor relocalisation and interpolating renormalisation group flows from the staircase model

482   0   0.0 ( 0 )
 Added by Gabor Takacs
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the staircase model, introduced by Aliosha Zamolodchikov through an analytic continuation of the sinh-Gordon S-matrix to describe interpolating flows between minimal models of conformal field theory in two dimensions. Applying the form factor expansion and the c-theorem, we show that the resulting c-function has the same physical content as that found by Zamolodchikov from the thermodynamic Bethe Ansatz. This turns out to be a consequence of a nontrivial underlying mechanism, which leads to an interesting localisation pattern for the spectral integrals giving the multi-particle contributions. We demonstrate several aspects of this form factor relocalisation, which suggests a novel approach to the construction of form factors and spectral sums in integrable renormalisation group flows with non-diagonal scattering.



rate research

Read More

Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive explicit expressions in free field theory based on the real time approach. Using monotonicity properties, we obtain new inequalities that need to be satisfied by consistent renormalization group trajectories in field theory. These inequalities play the role of a second law of thermodynamics, in the context of renormalization group flows. Finally, we apply these results to a tractable Kondo model, where we evaluate the Renyi relative entropies explicitly. An outcome of this is that Andersons orthogonality catastrophe can be avoided by working on a Cauchy surface that approaches the light-cone.
In this paper, we apply the form factor bootstrap approach to branch point twist fields in the $q$-state Potts model for $qleq 3$. For $q=3$ this is an integrable interacting quantum field theory with an internal discrete $mathbb{Z}_3$ symmetry and therefore provides an ideal starting point for the investigation of the symmetry resolved entanglement entropies. However, more generally, for $qleq 3$ the standard Renyi and entanglement entropies are also accessible through the bootstrap programme. In our work we present form factor solutions both for the standard branch point twist field with $qleq 3$ and for the composite (or symmetry resolved) branch point twist field with $q=3$. In both cases, the form factor equations are solved for two particles and the solutions are carefully checked via the $Delta$-sum rule. Using our analytic predictions, we compute the leading finite-size corrections to the entanglement entropy and entanglement equipartition for a single interval in the ground state.
We consider line defects in d-dimensional Conformal Field Theories (CFTs). The ambient CFT places nontrivial constraints on Renormalization Group (RG) flows on such line defects. We show that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We demonstrate our results in a flow between Wilson loops in 4 dimensions.
121 - Omar Foda , Rui-Dong Zhu 2019
We interpret aspects of the Schur indices, that were identified with characters of highest weight modules in Virasoro $(p,p)=(2,2k+3)$ minimal models for $k=1,2,dots$, in terms of paths that first appeared in exact solutions in statistical mechanics. From that, we propose closed-form fermionic sum expressions, that is, $q, t$-series with manifestly non-negative coefficients, for two infinite-series of Macdonald indices of $(A_1,A_{2k})$ Argyres-Douglas theories that correspond to $t$-refinements of Virasoro $(p,p)=(2,2k+3)$ minimal model characters, and two rank-2 Macdonald indices that correspond to $t$-refinements of $mathcal{W}_3$ non-unitary minimal model characters. Our proposals match with computations from 4D $mathcal{N} = 2$ gauge theories textit{via} the TQFT picture, based on the work of J Song arXiv:1509.06730.
130 - John Cardy 2017
We propose using smeared boundary states $e^{-tau H}|cal Brangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and of the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا