Do you want to publish a course? Click here

Automatic Photo Adjustment Using Deep Neural Networks

308   0   0.0 ( 0 )
 Added by Zhicheng Yan
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Photo retouching enables photographers to invoke dramatic visual impressions by artistically enhancing their photos through stylistic color and tone adjustments. However, it is also a time-consuming and challenging task that requires advanced skills beyond the abilities of casual photographers. Using an automated algorithm is an appealing alternative to manual work but such an algorithm faces many hurdles. Many photographic styles rely on subtle adjustments that depend on the image content and even its semantics. Further, these adjustments are often spatially varying. Because of these characteristics, existing automatic algorithms are still limited and cover only a subset of these challenges. Recently, deep machine learning has shown unique abilities to address hard problems that resisted machine algorithms for long. This motivated us to explore the use of deep learning in the context of photo editing. In this paper, we explain how to formulate the automatic photo adjustment problem in a way suitable for this approach. We also introduce an image descriptor that accounts for the local semantics of an image. Our experiments demonstrate that our deep learning formulation applied using these descriptors successfully capture sophisticated photographic styles. In particular and unlike previous techniques, it can model local adjustments that depend on the image semantics. We show on several examples that this yields results that are qualitatively and quantitatively better than previous work.



rate research

Read More

We present a data-driven inference method that can synthesize a photorealistic texture map of a complete 3D face model given a partial 2D view of a person in the wild. After an initial estimation of shape and low-frequency albedo, we compute a high-frequency partial texture map, without the shading component, of the visible face area. To extract the fine appearance details from this incomplete input, we introduce a multi-scale detail analysis technique based on mid-layer feature correlations extracted from a deep convolutional neural network. We demonstrate that fitting a convex combination of feature correlations from a high-resolution face database can yield a semantically plausible facial detail description of the entire face. A complete and photorealistic texture map can then be synthesized by iteratively optimizing for the reconstructed feature correlations. Using these high-resolution textures and a commercial rendering framework, we can produce high-fidelity 3D renderings that are visually comparable to those obtained with state-of-the-art multi-view face capture systems. We demonstrate successful face reconstructions from a wide range of low resolution input images, including those of historical figures. In addition to extensive evaluations, we validate the realism of our results using a crowdsourced user study.
Fast-AT is an automatic thumbnail generation system based on deep neural networks. It is a fully-convolutional deep neural network, which learns specific filters for thumbnails of different sizes and aspect ratios. During inference, the appropriate filter is selected depending on the dimensions of the target thumbnail. Unlike most previous work, Fast-AT does not utilize saliency but addresses the problem directly. In addition, it eliminates the need to conduct region search on the saliency map. The model generalizes to thumbnails of different sizes including those with extreme aspect ratios and can generate thumbnails in real time. A data set of more than 70,000 thumbnail annotations was collected to train Fast-AT. We show competitive results in comparison to existing techniques.
Numerical integration is a foundational technique in scientific computing and is at the core of many computer vision applications. Among these applications, neural volume rendering has recently been proposed as a new paradigm for view synthesis, achieving photorealistic image quality. However, a fundamental obstacle to making these methods practical is the extreme computational and memory requirements caused by the required volume integrations along the rendered rays during training and inference. Millions of rays, each requiring hundreds of forward passes through a neural network are needed to approximate those integrations with Monte Carlo sampling. Here, we propose automatic integration, a new framework for learning efficient, closed-form solutions to integrals using coordinate-based neural networks. For training, we instantiate the computational graph corresponding to the derivative of the network. The graph is fitted to the signal to integrate. After optimization, we reassemble the graph to obtain a network that represents the antiderivative. By the fundamental theorem of calculus, this enables the calculation of any definite integral in two evaluations of the network. Applying this approach to neural rendering, we improve a tradeoff between rendering speed and image quality: improving render times by greater than 10 times with a tradeoff of slightly reduced image quality.
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model the density and color of a scene as a function of 3D coordinates. While NeRF works well on images of static subjects captured under controlled settings, it is incapable of modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable illumination or transient occluders. We introduce a series of extensions to NeRF to address these issues, thereby enabling accurate reconstructions from unstructured image collections taken from the internet. We apply our system, dubbed NeRF-W, to internet photo collections of famous landmarks, and demonstrate temporally consistent novel view renderings that are significantly closer to photorealism than the prior state of the art.
The aim of this study is developing an automatic system for detection of gait-related health problems using Deep Neural Networks (DNNs). The proposed system takes a video of patients as the input and estimates their 3D body pose using a DNN based method. Our code is publicly available at https://github.com/rmehrizi/multi-view-pose-estimation. The resulting 3D body pose time series are then analyzed in a classifier, which classifies input gait videos into four different groups including Healthy, with Parkinsons disease, Post Stroke patient, and with orthopedic problems. The proposed system removes the requirement of complex and heavy equipment and large laboratory space, and makes the system practical for home use. Moreover, it does not need domain knowledge for feature engineering since it is capable of extracting semantic and high level features from the input data. The experimental results showed the classification accuracy of 56% to 96% for different groups. Furthermore, only 1 out of 25 healthy subjects were misclassified (False positive), and only 1 out of 70 patients were classified as a healthy subject (False negative). This study presents a starting point toward a powerful tool for automatic classification of gait disorders and can be used as a basis for future applications of Deep Learning in clinical gait analysis. Since the system uses digital cameras as the only required equipment, it can be employed in domestic environment of patients and elderly people for consistent gait monitoring and early detection of gait alterations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا