Do you want to publish a course? Click here

A broadband radio study of the average profile and giant pulses from PSR B1821-24A

149   0   0.0 ( 0 )
 Added by Anna Bilous
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of wide-band (720-2400 MHz) study of PSR B1821-24A (J1824-2452A, M28A), an energetic millisecond pulsar visible in radio, X-rays and gamma-rays. In radio, the pulsar has a complex average profile which spans >85% of the spin period and exhibits strong evolution with observing frequency. For the first time we measure phase-resolved polarization properties and spectral indices of radio emission throughout almost all of the on-pulse window. We combine this knowledge with the high-energy information to compare M28A to other known gamma-ray millisecond pulsars and to speculate that M28As radio emission originates in multiple regions within its magnetosphere (i.e. both in the slot or outer gaps near the light cylinder and at lower altitudes above the polar cap). M28A is one of the handful of pulsars which are known to emit Giant Pulses (GPs) -- short, bright radio pulses of unknown nature. We report a drop in the linear polarization of the average profile in both windows of GP generation and also a `W-shaped absorption feature (resembling a double notch), partly overlapping with one of the GP windows. The GPs themselves have broadband spectra consisting of multiple patches with fractional spectral width ($Delta u/ u$) of about 0.07. Although our time resolution was not sufficient to resolve the GP structure on the microsecond scale, we argue that GPs from this pulsar most closely resemble the GPs from the main pulse of the Crab pulsar, which consist of a series of narrowband nanoshots.



rate research

Read More

We report a 5.4sigma detection of pulsed gamma rays from PSR B1821-24 in the globular cluster M28 using ~44 months of Fermi Large Area Telescope (LAT) data that have been reprocessed with improved instrument calibration constants. We constructed a phase-coherent ephemeris, with post-fit residual RMS of 3 mu s, using radio data spanning ~23.2 years, enabling measurements of the multi-wavelength light curve properties of PSR B1821-24 at the milliperiod level. We fold RXTE observations of PSR B1821-24 from 1996 to 2007 and discuss implications on the emission zones. The gamma-ray light curve consists of two peaks, separated by 0.41$pm$0.02 in phase, with the first gamma-ray peak lagging the first radio peak by 0.05$pm$0.02 in phase, consistent with the phase of giant radio pulses. We observe significant emission in the off-peak interval of PSR B1821-24 with a best-fit LAT position inconsistent with the core of M28. We do not detect significant gamma-ray pulsations at the spin or orbital periods from any other known pulsar in M28, and we place limits on the number of energetic pulsars in the cluster. The derived gamma-ray efficiency, ~2%, is typical of other gamma-ray pulsars with comparable spin-down power, suggesting that the measured spin-down rate ($2.2times10^{36}$ erg s$^{-1}$) is not appreciably distorted by acceleration in the cluster potential. This confirms PSR B1821-24 as the second very energetic millisecond pulsar in a globular cluster and raises the question of whether these represent a separate class of objects that only form in regions of very high stellar density
No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hours of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range 1.5-4.5 keV. During the Crab pulsar periods with GPs the X-ray flux in radio emission phase windows does not change more than by +-10% for main pulse (MP) GPs and +-30% for interpulse (IP) GPs. During giant pulses themselves, the X-ray flux does not change more than by two times for MP GPs and 5 times for IP GPs. All limits quoted are compatible with 2-sigma fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.
The Double Pulsar, PSR J$0737$$-$$3039$A/B, is a unique system in which both neutron stars have been detected as radio pulsars. As shown in Ferdman et al., there is no evidence for pulse profile evolution of the A pulsar, and the geometry of the pulsar was fit well with a double-pole circular radio beam model. Assuming a more realistic polar cap model with a vacuum retarded dipole magnetosphere configuration including special relativistic effects, we create synthesized pulse profiles for A given the best-fit geometry from the simple circular beam model. By fitting synthesized pulse profiles to those observed from pulsar A, we constrain the geometry of the radio beam, namely the half-opening angle and the emission altitude, to be $30^circ$ and $10$ neutron star radii, respectively. Combining the observational constraints of PSR J$0737$$-$$3039$A/B, we are able to construct the full three-dimensional orbital geometry of the Double Pulsar. The relative angle between the spin axes of the two pulsars ($Delta_S$) is estimated to be ($138^circ pm 5^circ$) at the current epoch and will likely remain constant until tidal interactions become important in $sim$$85$ Myr, at merger.
We present radio observations of the most slowly rotating known radio pulsar PSR J0250+5854. With a 23.5 s period, it is close, or even beyond, the $P$-$dot{P}$ diagram region thought to be occupied by active pulsars. The simultaneous observations with FAST, the Chilbolton and Effelsberg LOFAR international stations, and NenuFAR represent a five-fold increase in the spectral coverage of this object, with the detections at 1250 MHz (FAST) and 57 MHz (NenuFAR) being the highest- and lowest-frequency published respectively to date. We measure a flux density of $4pm2$ $mu$Jy at 1250 MHz and an exceptionally steep spectral index of $-3.5^{+0.2}_{-1.5}$, with a turnover below $sim$95 MHz. In conjunction with observations of this pulsar with the GBT and the LOFAR Core, we show that the intrinsic profile width increases drastically towards higher frequencies, contrary to the predictions of conventional radius-to-frequency mapping. We examine polarimetric data from FAST and the LOFAR Core and conclude that its polar cap radio emission is produced at an absolute height of several hundreds of kilometres around 1.5 GHz, similar to other rotation-powered pulsars across the population. Its beam is significantly underfilled at lower frequencies, or it narrows because of the disappearance of conal outriders. Finally, the results for PSR J0250+5854 and other slowly spinning rotation-powered pulsars are contrasted with the radio-detected magnetars. We conclude that magnetars have intrinsically wider radio beams than the slow rotation-powered pulsars, and that consequently the latters lower beaming fraction is what makes objects such as PSR J0250+5854 so scarce.
We report on the detection of extreme giant pulses (GPs) from one of the oldest-known pulsars, the highly variable PSR B0950+08, with the Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC), a parallel transient detection instrument operating as a subsystem of the LOw Frequency ARray (LOFAR). During processing of our Northern Hemisphere survey for low-frequency radio transients, a sample of 275 pulses with fluences ranging from 42 to 177 kJy ms were detected in one-second snapshot images. The brightest pulses are an order of magnitude brighter than those previously reported at 42 and 74 MHz, on par with the levels observed in a previous long-term study at 103 MHz. Both their rate and fluence distribution differ between and within the various studies done to date. The GP rate is highly variable, from 0 to 30 per hour, with only two three-hour observations accounting for nearly half of the pulses detected in the 96 h surveyed. It does not vary significantly within a few-hour observation, but can vary strongly one from day to the next. The spectra appear strongly and variably structured, with emission sometimes confined to a single 195.3 kHz subband, and the pulse spectra changing on a timescale of order 10 min.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا