Do you want to publish a course? Click here

Structures in the outer solar atmosphere

157   0   0.0 ( 0 )
 Added by Lyndsay Fletcher
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure and dynamics of the outer solar atmosphere are reviewed with emphasis on the role played by the magnetic field. Contemporary observations that focus on high resolution imaging over a range of temperatures, as well as UV, EUV and hard X-ray spectroscopy, demonstrate the presence of a vast range of temporal and spatial scales, mass motions, and particle energies present. By focussing on recent developments in the chromosphere, corona and solar wind, it is shown that small scale processes, in particular magnetic reconnection, play a central role in determining the large-scale structure and properties of all regions. This coupling of scales is central to understanding the atmosphere, yet poses formidable challenges for theoretical models.



rate research

Read More

The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric layers hampers our progress in understanding solar magnetic activity. Overcoming this limitation would allow us to address four paramount long-standing questions: (1) How does the magnetic field couple the different layers of the atmosphere, and how does it transport energy? (2) How does the magnetic field structure, drive and interact with the plasma in the chromosphere and upper atmosphere? (3) How does the magnetic field destabilise the outer solar atmosphere and thus affect the interplanetary environment? (4) How do magnetic processes accelerate particles to high energies? New ground-breaking observations are needed to address these science questions. We suggest a suite of three instruments that far exceed current capabilities in terms of spatial resolution, light-gathering power, and polarimetric performance: (a) A large-aperture UV-to-IR telescope of the 1-3 m class aimed mainly to measure the magnetic field in the chromosphere by combining high spatial resolution and high sensitivity. (b) An extreme-UV-to-IR coronagraph that is designed to measure the large-scale magnetic field in the corona with an aperture of about 40 cm. (c) An extreme-UV imaging polarimeter based on a 30 cm telescope that combines high throughput in the extreme UV with polarimetry to connect the magnetic measurements of the other two instruments. This mission to measure the magnetic field will unlock the driver of the dynamics in the outer solar atmosphere and thereby greatly advance our understanding of the Sun and the heliosphere.
The presence of turbulent phenomena in the outer solar atmosphere is a given. However, because we are reduced to remotely sensing the atmosphere of a star with instruments of limited spatial and/or spectral resolution, we can only infer the physical progression from macroscopic to microscopic phenomena. Even so, we know that many, if not all, of the turbulent phenomena that pervade interplanetary space have physical origins at the Sun and so in this brief article we consider some recent measurements which point to sustained potential source(s) of heliospheric turbulence in the magnetic and thermal domains. In particular, we look at the scales of magnetism that are imprinted on the outer solar atmosphere by the relentless magneto-convection of the solar interior and combine state-of-the-art observations from the Solar Dynamics Observatory (SDO) and the Coronal Multi-channel Polarimeter (CoMP) which are beginning to hint at the origins of the wave/plasma interplay prevalent closer to the Earth. While linking these disparate scales of observation and understanding of their connection is near to impossible, it is clear that the constant evolution of subsurface magnetism on a host of scales guides and governs the flow of mass and energy at the smallest scales. In the near future significant progress in this area will be made by linking observations from high resolution platforms like the Interface Region Imaging Spectrograph (IRIS) and Advanced Technology Solar Telescope (ATST) with full-disk synoptic observations such as those presented herein.
Spectroscopic observations at extreme and far ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are highly likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overview of the characteristics of these upflows, introduce their possible formation mechanisms, and discuss their potential roles in the mass and energy transport in the solar atmosphere. Though past investigations have greatly improved our understanding of these upflows, they have left us with several outstanding questions and unresolved issues that should be addressed in the future. New observations from the Solar Orbiter mission, the Daniel K. Inouye Solar Telescope and the Parker Solar Probe will likely provide critical information to advance our understanding of the generation, propagation and energization of these upflows.
In this work, a state-of-the-art vortex detection method, Instantaneous Vorticity Deviation, is applied to locate three-dimensional vortex tube boundaries in numerical simulations of solar photospheric magnetoconvection performed by the MURaM code. We detected three-dimensional vortices distributed along intergranular regions and displaying coned shapes that extend from the photosphere to the low chromosphere. Based on a well-defined vortex center and boundary, we were able to determine averaged radial profiles and thereby investigate the dynamics across the vortical flows at different height levels. The solar vortex tubes present nonuniform angular rotational velocity, and, at all height levels, there are eddy viscosity effects within the vortices, which slow down the plasma as it moves toward the center. The vortices impact the magnetic field as they help to intensify the magnetic field at the sinking points, and in turn, the magnetic field ends up playing an essential role in the vortex dynamics. The magnetic field was found to be especially important to the vorticity evolution. On the other hand, it is shown that, in general, kinematic vortices do not give rise to magnetic vortices unless their tangential velocities at different height levels are high enough to overcome the magnetic tension.
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا