Do you want to publish a course? Click here

Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

233   0   0.0 ( 0 )
 Added by Gustavo Nobre
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. These results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.



rate research

Read More

We present an outline of an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. A model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed, inspired by previous works. We demonstrate that the obtained results of calculations for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkably good agreement with experimental data for scattering energies around a few MeV.
Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved agreement with experimental data compared to spherical optical model calculations. The effect of changing the OMP radius to preserve volume integral is moderate but visibly improves agreement at lower incident energies. We find that seven collective states need to be considered for the coupled-channel calculations to converge. Our results for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkable agreement with experimental data. This result confirms that the adiabatic assumption holds and can extend applicability of the global spherical OMP to rotational nuclei in the rare-earth region, essentially without any free parameter. Thus, quite reliable coupled-channel calculations can be performed on such nuclei even when the experimental data, and consequently a specific coupled-channel potential, are not available.
The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich emph{et al.}, a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.
We present an analysis based on the deformed Quasi Particle Random Phase Approximation, on top of a deformed Hartree-Fock-Bogoliubov description of the ground state, aimed at studying the isoscalar monopole and quadrupole response in a deformed nucleus. This analysis is motivated by the need of understanding the coupling between the two modes and how it might affect the extraction of the nuclear incompressibility from the monopole distribution. After discussing this motivation, we present the main ingredients of our theoretical framework, and we show some results obtained with the SLy4 and SkM$^{*}$ interactions for the nucleus ${}^{24}$Mg.
It has been possible, using GAMMASPHERE plus Microball,to extract differential lifetime measurements free from common systematic errors for over 15 different nuclei (various isotopes of Ce, Pr, Nd, Pm, and Sm) at high spin within a single experiment. This comprehensive study establishes the effective single-particle quadrupole moments in the A~135 light rare-earth region. Detailed comparisons are made with calculations using the self-consistent cranked mean-field theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا