We establish the path integral approach for the time-dependent heat exchange of an externally driven quantum system coupled to a thermal reservoir. We derive the relevant influence functional and present an exact formal expression for the moment generating functional which carries all statistical properties of the heat exchange process for general linear dissipation. The general method is applied to the time-dependent average heat transfer in the dissipative two-state system. We show that the heat can be written as a convolution integral which involves the population and coherence correlation functions of the two-state system and additional correlations due to a polarization of the reservoir. The corresponding expression can be solved in the weak-damping limit both for white noise and for quantum mechanical coloured noise. The implications of pure quantum effects are discussed. Altogether a complete description of the dynamics of the average heat transfer ranging from the classical regime down to zero temperature is achieved.
Couplings of a system to other degrees of freedom (that is, environmental degrees of freedom) lead to energy dissipation when the number of environmental degrees of freedom is large enough. Here we discuss quantal treatments for such energy dissipation. To this end, we discuss two different time-dependent methods. One is to introduce an effective time-dependent Hamiltonian, which leads to a classical equation of motion as a relationship among expectation values of quantum operators. We apply this method to a heavy-ion fusion reaction and discuss the role of dissipation on the penetrability of the Coulomb barrier. The other method is to start with a Hamiltonian with environmental degrees of freedom and derive an equation which the system degree of freedom obeys. For this, we present a new efficient method to solve coupled-channels equations, which can be easily applied even when the dimension of the coupled-channels equations is huge.
Using a real-time path integral approach we develop an algorithm to calculate multi-time correlation functions of open few-level quantum systems that is applicable to highly nonequilibrium dynamics. The calculational scheme fully keeps the non-Markovian memory introduced by the pure-dephasing type coupling to a continuum of oscillators. Furthermore, we discuss how to deal consistently with the simultaneous presence of non-Markovian and Markovian system reservoir interactions. We apply the method to a crucial test case, namely the evaluation of emission spectra of a laser-driven two-level quantum dot coupled to a continuum of longitudinal acoustic phonons, which give rise to non-Markovian dynamics. Here, we also account for the coupling to a photonic environment, which models radiative decay and can be treated as a Markovian bath. The phonon side bands are found on the correct side of the zero phonon line in our calculation, in contrast to known results where the quantum regression theorem is applied naively to non-Markovian dynamics. Combining our algorithm with a recently improved iteration scheme for performing the required sum over paths we demonstrate the numerical feasibility of our approach to systems with more than two levels. Results are shown for the second-order photonic two-time correlation function of a quantum dot-cavity system with seven states on the Jaynes-Cummings ladder taken into account.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.
In this Colloquium recent advances in the field of quantum heat transport are reviewed. This topic has been investigated theoretically for several decades, but only during the past twenty years have experiments on various mesoscopic systems become feasible. A summary of the theoretical basis for describing heat transport in one-dimensional channels is first provided. Then the main experimental investigations of quantized heat conductance due to phonons, photons, electrons, and anyons in such channels are presented. These experiments are important for understanding the fundamental processes that underly the concept of a heat conductance quantum for a single channel. Then an illustration on how one can control the quantum heat transport by means of electric and magnetic fields, and how such tunable heat currents can be useful in devices is given. This lays the basis for realizing various thermal device components such as quantum heat valves, rectifiers, heat engines, refrigerators, and calorimeters. Also of interest are fluctuations of quantum heat currents, both for fundamental reasons and for optimizing the most sensitive thermal detectors; at the end of the review the status of research on this intriguing topic is given.
A cornerstone assumption that most literature on discrete time crystals has relied on is that homogeneous Floquet systems generally heat to a featureless infinite temperature state, an expectation that motivated researchers in the field to mostly focus on many-body localized systems. Some works have however shown that the standard diagnostics for time crystallinity apply equally well to clean settings without disorder. This fact raises the question whether an homogeneous discrete time crystal is possible in which the originally expected heating is evaded. Studying both a localized and an homogeneous model with short-range interactions, we clarify this issue showing explicitly the key differences between the two cases. On the one hand, our careful scaling analysis confirms that, in the thermodynamic limit and in contrast to localized discrete time crystals, homogeneous systems indeed heat. On the other hand, we show that, thanks to a mechanism reminiscent of quantum scars, finite-size homogeneous systems can still exhibit very crisp signatures of time crystallinity. A subharmonic response can in fact persist over timescales that are much larger than those set by the integrability-breaking terms, with thermalization possibly occurring only at very large system sizes (e.g., of hundreds of spins). Beyond clarifying the emergence of heating in disorder-free systems, our work casts a spotlight on finite-size homogeneous systems as prime candidates for the experimental implementation of nontrivial out-of-equilibrium physics.
M. Carrega
,P. Solinas
,A. Braggio
.
(2014)
.
"Functional Integral approach to time-dependent heat exchange in open quantum systems: general method and applications"
.
Matteo Carrega
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا