No Arabic abstract
We investigate inflation and its scalar perturbation driven by a massive scalar field in the unimodular theory of gravity. We introduce a parameter $xi$ with which the theory is invariant under general unimodular coordinate transformations. When the unimodular parameter is $xi=6$, the classical picture of inflation is reproduced in the unimodular theory because it recovers the background equations of the standard theory of general relativity. We show that for $xi=6$, the theory is equivalent to the standard theory of general relativity at the perturbation level. Unimodular gravity constrains the gauge degree of freedom in the scalar perturbation, but the perturbation equations are similar to those in general relativity. For $xi eq 6$, we derive the power spectrum and the spectral index, and obtain the unimodular correction to the tensor-to-scalar ratio. Depending on the value of $xi$, the correction can either raise or lower the value of the tensor-to-scalar ratio.
The recently suggested generalized unimodular gravity theory, which was originally put forward as a model of dark energy, can serve as a model of cosmological inflation driven by the effective perfect fluid -- the dark purely gravitational sector of the theory. Its excitations are scalar gravitons which can generate, in the domain free from ghost and gradient instabilities, the red tilted primordial power spectrum of CMB perturbations matching with observations. The reconstruction of the parametric dependence of the action of the theory in the early inflationary Universe is qualitatively sketched from the cosmological data. The alternative possibilities of generating the cosmological acceleration or quantum transition to the general relativistic phase of the theory are also briefly discussed.
We study the modified Reissner Nordstrom metric in the unimodular gravity. So far the spherical symmetric Einstein field equation in unimodular gravity has been studied in the absence of any source. We consider static electric and magnetic charge as source. We solve for Maxwell equations in unimodular gravitational background. We show that in unimodular gravity the electromagnetic field strength tensor is modified. We also show that the solution in unimodular gravity differs from the usual R-N metric in Einstein gravity with some corrections. We further study the thermodynamical properties of the R-N black-hole solution in this theory.
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
We discuss unimodular gravity at a classical level, and in terms of its extension into the UV through an appropriate path integral representation. Classically, unimodular gravity is simply a gauge fixed version of General Relativity (GR), and as such it yields identical dynamics and physical predictions. We clarify this and explain why there is no sense in which it can bring a new perspective to the cosmological constant problem. The quantum equivalence between unimodular gravity and GR is more of a subtle question, but we present an argument that suggests one can always maintain the equivalence up to arbitrarily high momenta. As a corollary to this, we argue that whenever inequivalence is seen at the quantum level, that just means we have defined two different quantum theories that happen to share a classical limit.
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter $w$. For the range of $w$ near $-1$ this dark fluid can play the role of dark energy, while for $w=0$ this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently suggested mechanism of vacuum energy sequestering.