Do you want to publish a course? Click here

Exponential Varieties

106   0   0.0 ( 0 )
 Added by Piotr Zwiernik
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong positivity and convexity properties, familiar from toric varieties and their moment maps. Among them are varieties of inverses of symmetric matrices satisfying linear constraints. This class includes Gaussian graphical models. We develop a general theory of exponential varieties. These are derived from hyperbolic polynomials and their integral representations. We compare the multidegrees and ML degrees of the gradient map for hyperbolic polynomials.



rate research

Read More

We study the maximum likelihood degree (ML degree) of toric varieties, known as discrete exponential models in statistics. By introducing scaling coefficients to the monomial parameterization of the toric variety, one can change the ML degree. We show that the ML degree is equal to the degree of the toric variety for generic scalings, while it drops if and only if the scaling vector is in the locus of the principal $A$-determinant. We also illustrate how to compute the ML estimate of a toric variety numerically via homotopy continuation from a scaled toric variety with low ML degree. Throughout, we include examples motivated by algebraic geometry and statistics. We compute the ML degree of rational normal scrolls and a large class of Veronese-type varieties. In addition, we investigate the ML degree of scaled Segre varieties, hierarchical loglinear models, and graphical models.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of model terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
The notion of multivariate total positivity has proved to be useful in finance and psychology but may be too restrictive in other applications. In this paper we propose a concept of local association, where highly connected components in a graphical model are positively associated and study its properties. Our main motivation comes from gene expression data, where graphical models have become a popular exploratory tool. The models are instances of what we term mixed convex exponential families and we show that a mixed dual likelihood estimator has simple exact properties for such families as well as asymptotic properties similar to the maximum likelihood estimator. We further relax the positivity assumption by penalizing negative partial correlations in what we term the positive graphical lasso. Finally, we develop a GOLAZO algorithm based on block-coordinate descent that applies to a number of optimization procedures that arise in the context of graphical models, including the estimation problems described above. We derive results on existence of the optimum for such problems.
In this paper, we present a new Marshall-Olkin exponential shock model. The new construction method gives the proposed model further ability to allocate the common joint shock on each of the components, making it suitable for application in fields like reliability and credit risk. The given model has a singular part and supports both positive and negative dependence structure. Main dependence properties of the model is given and an analysis of stress-strength is presented. After a performance analysis on the estimator of parameters, a real data is studied. Finally, we give the multivariate version of the proposed model and its main properties.
We propose a perturbation method for determining the (largest) group of invariance of a toric ideal defined in Aoki and Takemura [2008a]. In the perturbation method, we investigate how a generic element in the row space of the configuration defining a toric ideal is mapped by a permutation of the indeterminates. Compared to the proof in Aoki and Takemura [2008a] which was based on stabilizers of a subset of indeterminates, the perturbation method gives a much simpler proof of the group of invariance. In particular, we determine the group of invariance for a general hierarchical model of contingency tables in statistics, under the assumption that the numbers of the levels of the factors are generic. We prove that it is a wreath product indexed by a poset related to the intersection poset of the maximal interaction effects of the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا