A new finger replacement technique which is applicable for RAKE receivers in the soft handover (SHO) region has been proposed and studied in [1], [2] under the ideal assumption that the fading is both independent and identically distributed from path to path. To supplement our previous work, we present a general comprehensive framework for the performance assessment of the proposed finger replacement schemes operating over independent and non-identically distributed (i.n.d.) faded paths. To accomplish this object, we derive new closed-form expressions for the target key statistics which are composed of i.n.d. exponential random variables. With these new expressions, the performance analysis of various wireless communication systems over more practical environments can be possible.