Electron-boson spectral density of LiFeAs obtained from optical data


Abstract in English

We analyze existing optical data in the superconducting state of LiFeAs at $T =$ 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density $I^2chi(omega)$ from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an $s$-wave superconductor, but does not eliminate the boson structure. We find a robust peak in $I^2chi(omega)$ centered about $Omega_R cong$ 8.0 meV or 5.3 $k_B T_c$ (with $T_c =$ 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at $T =$ 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.

Download