No Arabic abstract
We aim to understand the rich chemical composition of AFGL 2591, a prototypical isolated high-mass star-forming region. Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived with the Monte Carlo radiative transfer code RATRAN, assuming either constant values or 1D stepwise radial profiles as abundance distributions. The reconstructed 1D abundances were compared with the results of time-dependent gas-grain chemical modeling, considering ages of 10,000 to 50,000 years, cosmic-ray ionization rates of 0.5 to 50 times 10^-16 s^-1, uniformly-sized 0.1-1 micron dust grains, a dust/gas ratio of 1%, and several sets of initial molecular abundances with C/O <1 and >1. Constant abundance models give good fits to the data for CO, CN, CS, HCO+, H2CO, N2H+, C2H, NO, OCS, OH, H2CS, O, C, C+, and CH. Models with an abundance jump at 100 K give good fits to the data for NH3, SO, SO2, H2S, H2O, HCl, and CH3OH. For HCN and HNC, the best models have an abundance jump at 230 K. The time-dependent chemical model can accurately explain abundance profiles of 15 out of these 24 species. The jump-like radial profiles for key species like HCO+, NH3, and H2O are consistent with the outcome of the time-dependent chemical modeling. The best-fit model has a chemical age of 10-50 kyr, a solar C/O ratio of 0.44, and a cosmic-ray ionization rate of 5 x 10^-17 s^-1; grain properties and external UV intensity do not affect the calculated chemical structure much. We thus demonstrate that simple constant or jump-like abundance profiles agree with time-dependent chemical modeling for most key C-, O-, N-, and S-bearing molecules. The main exceptions are species with very few observed transitions (C, O, C+, and CH), with a poorly established chemical network (HCl, H2S) or whose chemistry is strongly affected by surface processes (CH3OH).
This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI instrument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.
We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL2591 using space-based far-infrared observations of linear rotor molecules. Rotational spectral line signatures of CO, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30m spectra, cover transitions with E(up)/k between 5 and ~300 K (750K for 12C16O, using selected frequency settings up to 1850 GHz). The resolved spectral line profiles are used to separate and study various kinematic components. The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level, qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as E(up)/k increases from <50 to 700K. We constrain the following: n(H2)~10^5-10^6 cm^-3 and T~60-200K for the outflow gas; T=9-17K and N(H2)~3x10^21 cm^-2 for a known foreground absorption cloud; N(H2)<10^19 cm^-2 for a second foreground component. Our spherical envelope radiative transfer model systematically underproduces observed line emission at E(up)/k > 150 K for all species. This indicates that warm gas should be added to the model and that the models geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (<10 km/s) outflow component consists of recently swept-up gas.
We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu_2 band of H2O, two by transitions in the first vibrationally excited nu_2 band of H2O, and one by a transition in the nu_2 band of H2{18}O. Among the detected transitions is the nu_2 1(1,1)--0(0,0) line which probes the lowest lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas, or that the absorption arises within the 6 micron emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed absorption lines are N(H2O)=(1.3+-0.3)*10^{19} cm^{-2} and T=640+-80 K.
Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L_Sol luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4.
CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6 resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.