Do you want to publish a course? Click here

Chemical pressure tuning of URu$_2$Si$_2$ via isoelectronic substitution of Ru with Fe

137   0   0.0 ( 0 )
 Added by Marc Janoschek
 Publication date 2014
  fields Physics
and research's language is English
 Authors Pinaki Das




Ask ChatGPT about the research

We have used specific heat and neutron diffraction measurements on single crystals of URu$_{2-x}$Fe$_x$Si$_2$ for Fe concentrations $x$ $leq$ 0.7 to establish that chemical substitution of Ru with Fe acts as chemical pressure $P_{ch}$ as previously proposed by Kanchanavatee et al. [Phys. Rev. B {bf 84}, 245122 (2011)] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at $x=0.1$, reminiscent of the behavior at the hidden order (HO) to large moment antiferromagnetic (LMAFM) phase transition observed at a pressure $P_xapprox$ 0.5-0.7~GPa in URu$_2$Si$_2$. Using the unit cell volume determined from our measurements and an isothermal compressibility $kappa_{T} = 5.2 times 10^{-3}$ GPa$^{-1}$ for URu$_2$Si$_2$, we determine the chemical pressure $P_{ch}$ in URu$_{2-x}$Fe$_x$Si$_2$ as a function of $x$. The resulting temperature $T$-chemical pressure $P_{ch}$ phase diagram for URu$_{2-x}$Fe$_x$Si$_2$ is in agreement with the established temperature $T$-external pressure $P$ phase diagram of URu$_2$Si$_2$.



rate research

Read More

The heavy-fermion metal YbRh$_2$Si$_2$ realizes a field-induced quantum critical point with multiple vanishing energy scales $T_{rm N}(B)$ and $T^ast(B)$. We investigate their change with partial non-isoelectronic substitutions, chemical and hydrostatic pressure. Low-temperature electrical resistivity, specific heat and magnetic susceptibility of Yb(Rh$_{1-x}$T$_x$)$_2$Si$_2$ with T=Fe or Ni for $xleq 0.1$, magnetic fields $Bleq 0.3$~T (applied perpendicular to the c-axis) and hydrostatic pressure $pleq 1.5$~GPa are reported. The data allow to disentangle the combined influences of hydrostatic and chemical pressure, as well as non-isoelectronic substitution. In contrast to Ni- and Co-substitution, which enhance magnetic order, Fe-substitution acts oppositely. For $x=0.1$ it also completely suppresses the $T^ast$ crossover and eliminates ferromagnetic fluctuations. The pressure, magnetic field and temperature dependences of $T^ast$ are incompatible with its interpretation as Kondo breakdown signature.
The application of pressure as well as the successive substitution of Ru with Fe in the hidden order (HO) compound URu$_2$Si$_2$ leads to the formation of the large moment antiferromagnetic phase (LMAFM). Here we have investigated the substitution series URu$_{2-x}$Fe$_x$Si$_2$ with $x$ = 0.2 and 0.3 with non-resonant inelastic x-ray scattering (NIXS) and 4$f$ core-level photoelectron spectroscopy with hard x-rays (HAXPES). NIXS shows that the substitution of Fe has no impact on the symmetry of the ground-state wave function. In HAXPES we find no shift of spectral weight that would be indicative for a change of the 5$f$-electron count. Consequently, changes in the exchange interaction $cal{J}$ due to substitution must be minor so that the conjecture of chemical pressure seems unlikely. An alternative scenario is discussed, namely the formation of long range magnetic order due the substitution induced local enhancement of the magnetization in the vicinity of the $f$-electron ions while the overall electronic structure remains unchanged.
In Ref. 1, Schubert et al. [Phys. Rev. Research 1, 032004 (2019)] reported measurements of the isothermal magnetoresistance of Fe- and Ni-substituted YbRh$_2$Si$_2$, based on which they raised questions about the Kondo destruction description for the magnetic field-induced quantum critical point (QCP) of pristine YbRh$_2$Si$_2$. Here we make three points. Firstly, as shown by studies on pristine YbRh$_2$Si$_2$ in Paschen et al. and Friedemann et al., isothermal crossed-field and single-field Hall effect measurements are necessary to ascertain the evolution of the Fermi surface across this QCP. Because Schubert et al. did not carry out such measurements, their results on Fe- and Ni-substituted YbRh$_2$Si$_2$ cannot be used to assess the validity of the Kondo destruction picture neither for substituted nor for pristine YbRh$_2$Si$_2$. Secondly, when referring to the data of Friedemann et al. on the isothermal crossover of YbRh$_2$Si$_2$, they did not recognize the implications of the crossover width, quantified by the full width at half maximum (FWHM), being linear in temperature, with zero offset, over about $1.5$ decades in temperature, from 30 mK to 1 K. Finally, in claiming deviations of Hall crossover FWHM data of Friedemann et al. from the above linear-in-$T$ dependence they neglected the error bars of these measurements and discarded some of the data points. The claims of Schubert et al. are thus not supported by data, neither previously published nor new (Ref. 1). As such they cannot invalidate the evidence that has been reported for Kondo destruction quantum criticality in YbRh$_2$Si$_2$.
100 - J. Choi , O. Ivashko , N. Dennler 2019
Phase transitions and symmetry are intimately linked. Melting of ice, for example, restores translation invariance. The mysterious hidden order (HO) phase of URu$_2$Si$_2$ has, despite relentless research efforts, kept its symmetry breaking element intangible. Here we present a high-resolution x-ray diffraction study of the URu$_2$Si$_2$ crystal structure as a function of hydrostatic pressure. Below a critical pressure threshold $p_capprox3$ kbar, no tetragonal lattice symmetry breaking is observed even below the HO transition $T_{HO}=17.5$ K. For $p>p_c$, however, a pressure-induced rotational symmetry breaking is identified with an onset temperatures $T_{OR}sim 100$ K. The emergence of an orthorhombic phase is found and discussed in terms of an electronic nematic order that appears unrelated to the HO, but with possible relevance for the pressure-induced antiferromagnetic (AF) phase. Existing theories describe the HO and AF phases through an adiabatic continuity of a complex order parameter. Since none of these theories predicts a pressure-induced nematic order, our finding adds an additional symmetry breaking element to this long-standing problem.
133 - Y. Lai , K. Wei , G. Chappell 2020
Structural phase transitions in $f$-electron materials have attracted sustained attention both for practical and basic science reasons, including that they offer an environment to directly investigate relationships between structure and the $f$-state. Here we present results for UCr$_2$Si$_2$, where structural (tetragonal $rightarrow$ monoclinic) and antiferromagnetic phase transitions are seen at $T_{rm{S}}$ $=$ 205 K and $T_{rm{N}}$ $=$ 25 K, respectively. We also provide evidence for an additional second order phase transition at $T_{rm{X}}$ = 280 K. We show that $T_{rm{X}}$, $T_{rm{S}}$, and $T_{rm{N}}$ respond in distinct ways to the application of hydrostatic pressure and Cr $rightarrow$ Ru chemical substitution. In particular, hydrostatic compression increases the structural ordering temperature, eventually causes it to merge with $T_{rm{X}}$ and destroys the antiferromagnetism. In contrast, chemical substitution in the series UCr$_{2-x}$Ru$_x$Si$_2$ suppresses both $T_{rm{S}}$ and $T_{rm{N}}$, causing them to approach zero temperature near $x$ $approx$ 0.16 and 0.08, respectively. The distinct $T-P$ and $T-x$ phase diagrams are related to the evolution of the rigid Cr-Si and Si-Si substructures, where applied pressure semi-uniformly compresses the unit cell and Cr $rightarrow$ Ru substitution results in uniaxial lattice compression along the tetragonal $c$-axis and an expansion in the $ab$-plane. These results provide insights into an interesting class of strongly correlated quantum materials where degrees of freedom associated with $f$-electron magnetism, strong electronic correlations, and structural instabilities are readily controlled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا