Do you want to publish a course? Click here

The stellar mass - halo mass relation from galaxy clustering in VUDS: a high star formation efficiency at z~3

182   0   0.0 ( 0 )
 Added by Anna Durkalec
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relation between the galaxy stellar mass M_star and the dark matter halo mass M_h gives important information on the efficiency in forming stars and assembling stellar mass in galaxies. We present the stellar mass to halo mass ratio (SMHR) measurements at redshifts 2<z<5, obtained from the VIMOS Ultra Deep Survey. We use halo occupation distribution (HOD) modelling of clustering measurements on ~3000 galaxies with spectroscopic redshifts to derive the dark matter halo mass M_h, and SED fitting over a large set of multi-wavelength data to derive the stellar mass M_star and compute the SMHR=M_star/M_h. We find that the SMHR ranges from 1% to 2.5% for galaxies with M_star=1.3x10^9 M_sun to M_star=7.4x10^9 M_sun in DM halos with M_h=1.3x10^{11} M_sun} to M_h=3x10^{11} M_sun. We derive the integrated star formation efficiency (ISFE) of these galaxies and find that the star formation efficiency is a moderate 6-9% for lower mass galaxies while it is relatively high at 16% for galaxies with the median stellar mass of the sample ~7x10^9 M_sun. The lower ISFE at lower masses may indicate that some efficient means of suppressing star formation is at work (like SNe feedback), while the high ISFE for the average galaxy at z~3 is indicating that these galaxies are efficiently building-up their stellar mass at a key epoch in the mass assembly process. We further infer that the average mass galaxy at z~3 will start experiencing star formation quenching within a few hundred millions years.



rate research

Read More

116 - Weiwei Xu , Huanyuan Shan , Ran Li 2021
The concentration-mass (c-M) relation encodes the key information of the assembly history of the dark matter halos, however its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of halo c-M relation with galaxy-galaxy lensing method, using shear catalog of the Dark Energy Camera Legacy Survey (DECaLS) Data Release 8, which covers a sky area of 9500 deg^2. The foreground lenses are selected from redMaPPer, LOWZ, and CMASS catalogs, with halo mass range from 10^{13} to 10^{15} M_sun and redshift range from z=0.08 to z=0.65. We find that the concentration decreases with the halo mass from 10^{13} to 10^{14} M_sun, but shows a trend of upturn after the pivot point of ~10^{14} M_sun. We fit the measured c-M relation with the concentration model c(M)=C_0 (M/(10^{12} M_sun/h)^{-gamma} [1+(M/M_0)^{0.4}], and get the values (C_0, gamma, log(M_0) = (5.119_{-0.185}^{0.183}, 0.205_{-0.010}^{0.010}, 14.083_{-0.133}^{0.130}), and (4.875_{-0.208}^{0.209}, 0.221_{-0.010}^{0.010}, 13.750_{-0.141}^{0.142}) for halos with 0.08<=z<0.35 and 0.35<=z<0.65, respectively. We also show that the model including an upturn is favored over a simple power-law model. Our measurement provides important information for the recent argument of massive cluster formation process.
We utilize $Lambda$CDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between $0.2<z<1.2$. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range $M_mathrm{halo}sim10^{11}$-$10^{13}~h^{-1}M_odot$, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models, including models based primarily on abundance-matching constraints. We find that the fraction of satellite galaxies in haloes of a given mass decreases significantly from $zsim0.5$ to $zsim0.9$, partly due to the fact that haloes at fixed mass are rarer at higher redshift and have lower abundances. We also find that the $M_1/M_mathrm{min}$ ratio, a model parameter that quantifies the critical mass above which haloes host at least one satellite, decreases from $approx20$ at $zsim0$ to $approx13$ at $zsim0.9$. Considering the evolution of the subhalo mass function vis-`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between $zsim0.9$ and $zsim0.5$.
219 - L.Wang , D.Farrah , S.J.Oliver 2012
We have constructed an extended halo model (EHM) which relates the total stellar mass and star-formation rate (SFR) to halo mass (M_h). An empirical relation between the distribution functions of total stellar mass of galaxies and host halo mass, tuned to match the spatial density of galaxies over 0<z<2 and the clustering properties at z~0, is extended to include two different scenarios describing the variation of SFR on M_h. We also present new measurements of the redshift evolution of the average SFR for star-forming galaxies of different stellar mass up to z=2, using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) for infrared-bright galaxies. Combining the EHM with the halo accretion histories from numerical simulations, we trace the stellar mass growth and star-formation history in halos spanning a range of masses. We find that: (1) The intensity of the star-forming activity in halos in the probed mass range has steadily decreased from z~2 to 0; (2) At a given epoch, halos in the mass range between a few times 10^{11} M_Sun and a few times 10^{12} M_Sun are the most efficient at hosting star formation; (3) The peak of SFR density shifts to lower mass halos over time; (4) Galaxies that are forming stars most actively at z~2 evolve into quiescent galaxies in todays group environments, strongly supporting previous claims that the most powerful starbursts at z~2 are progenitors of todays elliptical galaxies.
We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass-halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates; however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z=4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. These results will provide a powerful tool to inform galaxy evolution models. [Abridged]
We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0<$z$<5.0 using the VIMOS Ultra Deep Survey (VUDS). We present the projected (real-space) two-point correlation function $w_p(r_p)$ measured by using 3022 galaxies with robust spectroscopic redshifts in two independent fields (COSMOS and VVDS-02h) covering in total 0.8 deg$^2$. We quantify how the scale dependent clustering amplitude $r_0$ changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model $xi(r) = (r/r_0)^{-gamma}$ we find that the correlation function for the general population is best fit by a model with a clustering length $r_0$=3.95$^{+0.48}_{-0.54}$ h$^{-1}$Mpc and slope $gamma$=1.8$^{+0.02}_{-0.06}$ at $z$~2.5, $r_0$=4.35$pm$0.60 h$^{-1}$Mpc and $gamma$=1.6$^{+0.12}_{-0.13}$ at $z$~3.5. We use these clustering parameters to derive the large-scale linear galaxy bias $b_L^{PL}$, between galaxies and dark matter. We find $b_L^{PL}$ = 2.68$pm$0.22 at redshift $z$~3 (assuming $sigma_8$ = 0.8), significantly higher than found at intermediate and low redshifts. We fit an HOD model to the data and we obtain that the average halo mass at redshift $z$~3 is $M_h$=10$^{11.75pm0.23}$ h$^{-1}$M$_{odot}$. From this fit we confirm that the large-scale linear galaxy bias is relatively high at $b_L^{HOD}$ = 2.82$pm$0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at $z$~3 should evolve into the massive and bright ($M_r$<-21.5) galaxy population which typically occupy haloes of mass $langle M_hrangle$ = 10$^{13.9}$ h$^{-1}$ $M_{odot}$ at redshift $z$=0.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا