Do you want to publish a course? Click here

The ionised, radical and molecular Milky Way: spectroscopic surveys with the SKA

107   0   0.0 ( 0 )
 Added by Mark Thompson
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bandwith, sensitivity and sheer survey speed of the SKA offers unique potential for deep spectroscopic surveys of the Milky Way. Within the frequency bands available to the SKA lie many transitions that trace the ionised, radical and molecular components of the interstellar medium and which will revolutionise our understanding of many physical processes. In this chapter we describe the impact on our understanding of the Milky Way that can be achieved by spectroscopic SKA surveys, including out of the box early science with radio recombination lines, Phase 1 surveys of the molecular ISM using anomalous formaldehyde absorption, and full SKA surveys of ammonia inversion lines.



rate research

Read More

We have investigated the possibilities to quantify how much stars move in the Milky Way stellar disk due to diffuse processes (i.e. so called blurring) and due to influences from spiral arms and the bar (i.e. so called churning). To this end we assume that it is possible to infer the formation radius of a star if we know their elemental abundances and age as well as the metallicity profile of the interstellar medium at the time of the formation of the star. Using this information, coupled with orbital information derived from Gaia DR2 data and radial velocities from large spectroscopic surveys, we show that it is possible to isolate stellar samples such that we can start to quantify how important the role of churning is. We use data from APOGEE DR14, parallaxes from Gaia and stellar ages based on C and N elemental abundances in the stars. In our sample, we find that about half of the stars have experienced some sort of radial migration (based solely on their orbital properties), 10 % have likely have suffered only from churning, whilst a modest 5-7 % of stars have never experienced either churning or blurring making them ideal tracers of the original properties of the cool stellar disk. Our investigation shows that it is possible to put up a framework where we can begin to quantify churning and blurring an important. Important aspects for future work would include to investigate how selection effects should be accounted for.
We investigate here the effect of the selection function on the metallicity distribution function (MDF) and on the vertical metallicity gradient by studying similar lines of sight using four different spectroscopic surveys (APOGEE, LAMOST, RAVE, and Gaia-ESO), which have different targeting strategies and therefore different selection functions. We use common fields between the spectroscopic surveys of APOGEE, LAMOST, RAVE (ALR) and APOGEE, RAVE, Gaia-ESO (AGR) and use two stellar population synthesis models, GALAXIA and TRILEGAL, to create mock fields for each survey. We apply the selection function in the form of colour and magnitude cuts of the respective survey to the mock fields to replicate the observed source sample. We make a basic comparison between the models to check which best reproduces the observed sample distribution. We carry out a quantitative comparison between the synthetic MDF from the mock catalogues using both models to understand the effect of the selection function on the MDF and on the vertical metallicity gradient. Using both models, we find a negligible effect of the selection function on the MDF for APOGEE, LAMOST, and RAVE. We find a negligible selection function effect on the vertical metallicity gradients as well, though GALAXIA and TRILEGAL have steeper and shallower slopes, respectively, than the observed gradient. After applying correction terms on the metallicities of RAVE and LAMOST with respect to our reference APOGEE sample, our observed vertical metallicity gradients between the four surveys are consistent within 1-sigma. We also find consistent gradient for the combined sample of all surveys in ALR and AGR. We estimated a mean vertical metallicity gradient of -0.241+/-0.028 dex kpc-1. There is a significant scatter in the estimated gradients in the literature, but our estimates are within their ranges.
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., this issue). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 micron) simultaneously. A high-resolution (R~19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements.
Throughout the Milky Way, molecular clouds typically appear filamentary, and mounting evidence indicates that this morphology plays an important role in star formation. What is not known is to what extent the dense filaments most closely associated with star formation are connected to the surrounding diffuse clouds up to arbitrarily large scales. How are these cradles of star formation linked to the Milky Ways spiral structure? Using archival Galactic plane survey data, we have used multiple datasets in search of large-scale, velocity-coherent filaments in the Galactic plane. In this paper, we present our methods employed to identify coherent filamentary structures first in extinction and confirmed using Galactic Ring Survey data. We present a sample of seven Giant Molecular Filaments (GMFs) that have lengths of order $sim$100 pc, total masses of 10$^4$ - 10$^5$ M$_{odot}$, and exhibit velocity coherence over their full length. The GMFs we study appear to be inter-arm clouds and may be the Milky Way analogues to spurs observed in nearby spiral galaxies. We find that between 2 and 12% of the total mass (above $sim$10$^{20}$ cm$^{-2}$) is dense (above 10$^{22}$ cm$^{-2}$), where filaments near spiral arms in the Galactic midplane tend to have higher dense gas mass fractions than those further from the arms.
The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between HI and 12CO(J=1-0) in supershells. Detailed parsec-resolution case studies of two Milky Way supershells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ~10%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا