From the symmetry between definitions of left and right divisors in associative $D$-algebra $A$, the possibility to define quotient as $Aotimes A$-number follows. In the paper, I considered division and division with remainder. I considered also definition of prime $A$-number.
In this paper, I treat quadratic equation over associative $D$-algebra. In quaternion algebra $H$, the equation $x^2=a$ has either $2$ roots, or infinitely many roots. Since $ain R$, $a<0$, then the equation has infinitely many roots. Otherwise, the equation has roots $x_1$, $x_2$, $x_2=-x_1$. I considered different forms of the Vietes theorem and a possibility to apply the method of completing the square. In quaternion algebra, there exists quadratic equation which either has $1$ root, or has no roots.
Module is effective representation of ring in Abelian group. Linear map of module over commutative ring is morphism of corresponding representation. This definition is the main subject of the book. To consider this definition from more general point of view I started the book from consideration of Cartesian product of representations. Polymorphism of representations is a map of Cartesian product of representations which is a morphism of representations with respect to each separate independent variable. Reduced morphism of representations allows us to simplify the study of morphisms of representations. However a representation has to satisfy specific requirements for existence of reduced polymomorphism of representations. It is possible that Abelian group is only $Omega$-algebra, such that representation in this algebra admits polymorphism of representations. However, today, this statement has not been proved. Multiplicative $Omega$-group is $Omega$-algebra in which product is defined. The definition of tensor product of representations of Abelian multiplicative $Omega$-group is based on properties of reduced polymorphism of representations of Abelian multiplicative $Omega$-group. Since an algebra is a module in which the product is defined, then we can use this theory to study linear map of algebra. For instance, we can study the set of linear transformations of $D$-algebra $A$ as representation of algebra $Aotimes A$ in algebra $A$.
In the book, I considered differential equations of order $1$ over Banach $D$Hyph algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. I considered examples of differential equations in quaternion algebra. In order to study homogeneous system of linear differential equations, I considered vector space over division $D$-algebra, solving of linear equations over division $D$-algebra and the theory of eigenvalues in non commutative division $D$-algebra.
The theory of abstract kernels in non-trivial extensions for many kinds of algebraical objects, such as groups, rings and graded rings, associative algebras, Lie algebras, restricted Lie algebras, DG-algebras and DG-Lie algebras, has been widely studied since 1940s. Gerhard Hochschild firstly treats associative algebra as an generic type in the series of kernel problems. He proves the theorem of constructing kernel by presenting many tedious relations that may lost the readers today. In this paper, we shall illustrate the formulation and recast it for Lie algebra(-oid) kernels. We also prove the independence of 3-cocycle in the case of associative algebra. Finally, we use the universal enveloping algebra of Lie algebra to reduce the difficulty of a direct construction for the derivation algebras.
Let $A$ be Banach algebra over commutative ring $D$. The map $f:Arightarrow A $ is called differentiable in the Gateaux sense, if $$f(x+a)-f(x)=partial f(x)circ a+o(a)$$ where the Gateaux derivative $partial f(x)$ of map $f$ is linear map of increment $a$ and $o$ is such continuous map that $$ lim_{arightarrow 0}frac{|o(a)|}{|a|}=0 $$ Assuming that we defined the Gateaux derivative $partial^{n-1} f(x)$ of order $n-1$, we define $$ partial^n f(x)circ(a_1otimes...otimes a_n) =partial(partial^{n-1} f(x)circ(a_1otimes...otimes a_{n-1}))circ a_n $$ the Gateaux derivative of order $n$ of map $f$. Since the map $f(x)$ has all derivatives, then the map $f(x)$ has Taylor series expansion $$ f(x)=sum_{n=0}^{infty}(n!)^{-1}partial^n f(x_0)circ(x-x_0)^n $$