Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au


Abstract in English

We present the first multi-wavelength, high-contrast imaging study confirming the protoplanet embedded in the disk around the Herbig Ae/Be star HD100546. The object is detected at $L$ ($sim 3.8,mu m$) and $M$ ($sim 4.8,mu m$), but not at $K_s$ ($sim 2.1,mu m$), and the emission consists of a point source component surrounded by spatially resolved emission. For the point source component we derive apparent magnitudes of $L=13.92pm0.10$ mag, $M=13.33pm0.16$ mag, and $K_s>15.43pm0.11$ mag (3$sigma$ limit), and a separation and position angle of $(0.457pm0.014)$ and $(8.4pm1.4)^circ$, and $(0.472pm0.014)$ and $(9.2pm1.4)^circ$ in $L$ and $M$, respectively. We demonstrate that the object is co-moving with HD100546 and can reject any (sub-)stellar fore-/background object. Fitting a single temperature blackbody to the observed fluxes of the point source component yields an effective temperature of $T_{eff}=932^{+193}_{-202}$ K and a radius for the emitting area of $R=6.9^{+2.7}_{-2.9}$ R$_{rm Jupiter}$. The best-fit luminosity is $L=(2.3^{+0.6}_{-0.4})cdot 10^{-4},L_{rm Sun}$. We quantitatively compare our findings with predictions from evolutionary and atmospheric models for young, gas giant planets, discuss the possible existence of a warm, circumplanetary disk, and note that the de-projected physical separation from the host star of $(53pm2)$ au poses a challenge standard planet formation theories. Considering the suspected existence of an additional planet orbiting at $sim$13--14 au, HD100546 appears to be an unprecedented laboratory to study the formation of multiple gas giant planets empirically.

Download