No Arabic abstract
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv{e}n waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{perp}^{-1.5}$ for smaller simulation domain, and $k_{perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionless damping via resonant wave-particle interactions versus dissipation in small-scale current sheets in weakly collisional plasma turbulence. Current sheets form self-consistently from the wave-driven turbulence, and their filling fraction is well correlated to the electron heating rate. However, the weakly collisional nature of the simulation necessarily implies that the current sheets are not significantly dissipated via Ohmic dissipation. Rather, collisionless damping via the Landau resonance with the electrons is sufficient to account for the measured heating as a function of scale in the simulation, without the need for significant Ohmic dissipation. This finding suggests the possibility that the dissipation of the current sheets is governed by resonant wave-particle interactions and that the locations of current sheets correspond spatially to regions of enhanced heating.
Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfven wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the intermediate $beta_p=1$ and low $beta_p=0.2$ regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits $k_perp^{-8/3}$ and $k_|^{-7/2}$ power laws at $beta_p=1$, while they are slightly steeper at $beta_p=0.2$. Nevertheless, both regimes develop a spectral anisotropy consistent with $k_|sim k_perp^{2/3}$ at $k_perprho_p>1$, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at $beta_p=1$, whereas the low-$beta$ case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfven wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $betagtrsim1$ and by magnetosonic/whistler fluctuations at lower $beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma $beta$, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.
Turbulence is ubiquitously observed in nearly collisionless heliospheric plasmas, including the solar wind and corona and the Earths magnetosphere. Understanding the collisionless mechanisms responsible for the energy transfer from the turbulent fluctuations to the particles is a frontier in kinetic turbulence research. Collisionless energy transfer from the turbulence to the particles can take place reversibly, resulting in non-thermal energy in the particle velocity distribution functions (VDFs) before eventual collisional thermalization is realized. Exploiting the information contained in the fluctuations in the VDFs is valuable. Here we apply a recently developed method based on VDFs, the field-particle correlation technique, to a $beta=1$, solar-wind-like, low-frequency Alfvenic turbulence simulation with well resolved phase space to identify the field-particle energy transfer in velocity space. The field-particle correlations reveal that the energy transfer, mediated by the parallel electric field, results in significant structuring of the ion and electron VDFs in the direction parallel to the magnetic field. Fourier modes representing the length scales between the ion and electron gyroradii show that energy transfer is resonant in nature, localized in velocity space to the Landau resonances for each Fourier mode. The energy transfer closely follows the Landau resonant velocities with varying perpendicular wavenumber $k_perp$ and plasma $beta$. This resonant signature, consistent with Landau damping, is observed in all diagnosed Fourier modes that cover the dissipation range of the simulation.
A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasma beta of order the electron-ion mass ratio. The model contains collisions and can be used both in the collisional and collisionless reconnection regimes. It includes gyrokinetic ions (not assumed cold) and allows for the topological rearrangement of the magnetic field lines by either resistivity or electron inertia, whichever predominates. The two-fluid dynamics are coupled to electron kinetics --- electrons are not assumed isothermal and are described by a reduced drift-kinetic equation. The model therefore allows for irreversibility and conversion of magnetic energy into electron heat via parallel phase mixing in velocity space. An analysis of the exchanges between various forms of free energy and its conversion into electron heat is provided. It is shown how all relevant linear waves and regimes of the tearing instability (collisionless, semicollisional and fully resistive) are recovered in various limits of our model. An efficient way to simulate our equations numerically is proposed, via the Hermite representation of the velocity space. It is shown that small scales in velocity space will form, giving rise to a shallow Hermite-space spectrum, whence it is inferred that, for steady-state or sufficiently slow dynamics, the electron heating rate will remain finite in the limit of vanishing collisionality.