Do you want to publish a course? Click here

Performance study of the effective gain of the double phase liquid Argon LEM Time Projection Chamber

227   0   0.0 ( 0 )
 Added by Andre Rubbia
 Publication date 2014
  fields Physics
and research's language is English
 Authors C.Cantini




Ask ChatGPT about the research

The Large Electron Multipliers (LEMs) are key components of double phase liquid argon TPCs. The drifting charges after being extracted from the liquid are amplified in the LEM positioned half a centimeter above the liquid in pure argon vapor at 87 K. The LEM is characterised by the size of its dielectric rim around the holes, the thickness of the LEM insulator, the diameter of the holes as well as their geometrical layout. The impact of those design parameters on the amplification were checked by testing seven different LEMs with an active area of 10$times$10 cm$^2$ in a double phase liquid argon TPC of 21 cm drift. We studied their response in terms of maximal reachable gain and impact on the collected charge uniformity as well as the long term stability of the gain. We show that we could reach maximal gains of around 150 which corresponds to a signal-to-noise ratio ($S/N$) of about 800 for a minimal ionising particle (MIP) signal on 3 mm readout strips. We could also conclude that the dielectric surfaces in the vicinity of the LEM holes charge up with different time constants that depend on their design parameters. Our results demonstrate that the LAr LEM TPC is a robust concept that is well-understood and well-suited for operation in ultra-pure cryogenic environments and that can match the goals of future large-scale liquid argon detectors.



rate research

Read More

In this paper we give a thorough description of a liquid argon time projection chamber designed, built and operated at Yale. We present results from a calibration run where cosmic rays have been observed in the detector, a first in the US.
This manuscript describes the commissioning of the Mini-CAPTAIN liquid argon detector in a neutron beam at the Los Alamos Neutron Science Center (LANSCE), which led to a first measurement of high-energy neutron interactions in argon. The Mini-CAPTAIN detector consists of a Time Projection Chamber (TPC) with an accompanying photomultiplier tube (PMT) array sealed inside a liquid-argon-filled cryostat. The liquid argon is constantly purified and recirculated in a closed-loop cycle during operation. The specifications and assembly of the detector subsystems and an overview of their performance in a neutron beam are reported.
In this paper we present results from a test of a small Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of charge amplification, suited for next-generation neutrino detectors and possibly direct Dark Matter searches. During a test of a 3~lt chamber equipped with a 10$times$10~cm$^2$ readout, cosmic muon data was recorded during three weeks of data taking. A maximum gain of 6.5 was achieved and the liquid argon was kept pure enough to ensure 20~cm drift (O(ppb)~O$_2$ equivalent).
485 - B.Rossi , I.Badhress , A.Ereditato 2009
This paper describes the design, realization and operation of a prototype liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the development of a novel online monitoring and calibration system exploiting UV laser beams. In particular, the system is intended to measure the lifetime of the primary ionization in LAr, in turn related to the LAr purity level. This technique could be exploited by present and next generation large mass LAr TPCs for which monitoring of the performance and calibration plays an important role. Results from the first measurements are presented together with some considerations and outlook.
Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensitivities down to the so-called neutrino floor for high and low WIMP masses. Based on the successful operation of the DarkSide-50 detector, a new and more sensitive experiment, DarkSide-20k, was designed and is now under construction. A thorough understanding of the DarkSide-50 detector response to events classified as dark matter as well as all other interactions is essential for an optimal design of the new experiment. In this paper, we report on a particular set of events, for which scintillation-ionization signals are observed in association with signals from single or few isolated electrons. We identified and provided an interpretation for two event types in which electrons are produced via photoelectric effect on the cathode electrode and in the bulk liquid. Events with photoelectric emissions are observed in association with most interactions with large energy depositions in the detector. From the measured rate of these events, we determine the photo-ionization probability, or photoelectric quantum efficiency, of tetraphenyl butadiene (TPB) at wavelengths around 128 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا