Do you want to publish a course? Click here

Triaxially deformed relativistic point-coupling model for $Lambda$ hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

172   0   0.0 ( 0 )
 Added by Jiangming Yao
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of $E2$ transition strength in low-lying states of hypernucleus $^{7}_Lambda$Li. Many more data on low-lying states of $Lambda$ hypernuclei will be measured soon for $sd$-shell nuclei, providing good opportunities to study the $Lambda$ impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of $Lambda$ hyperon impurity effect on the low-lying states of $sd$-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the $Lambda$ hyperon is injected into the lowest positive-parity ($Lambda_s$) and negative-parity ($Lambda_p$) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the $Lambda$ binding energies of hypernuclei as well as the potential energy surfaces (PESs) in $(beta, gamma)$ deformation plane. We also calculate the PESs for the $Lambda$ hypernuclei with good quantum numbers using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking $^{25,27}_{Lambda}$Mg and $^{31}_{Lambda}$Si as examples, we analyse the impurity effects of $Lambda_s$ and $Lambda_p$ on the low-lying states of the core nuclei...



rate research

Read More

172 - Y. Tanimura , K. Hagino 2011
We extend the relativistic point coupling model to single-$Lambda$ hypernuclei. For this purpose, we add $N$-$Lambda$ effective contact couplings to the model Lagrangian, and determine the parameters by fitting to the experimental data for $Lambda$ binding energies. Our model well reproduces the data over a wide range of mass region although some of our interactions yield the reverse ordering of the spin-orbit partners from that of nucleons for heavy hypernuclei. The consistency of the interaction with the quark model predictions is also discussed.
137 - K. Hagino , J. M. Yao , F. Minato 2012
We discuss low-lying collective excitations of $Lambda$ hypernuclei using the self-consistent mean-field approaches. We first discuss the deformation properties of $Lambda$ hypernuclei in the $sd$-shell region. Based on the relativistic mean-field (RMF) approach, we show that the oblate deformation for $^{28}$Si nucleus may disappear when a $Lambda$ particle is added to this nucleus. We then discuss the rotational excitations of $^{25}_{Lambda}$Mg nucleus using the three-dimensional potential energy surface in the deformation plane obtained with the Skyrme-Hartree-Fock method. The deformation of $^{25}_{Lambda}$Mg nucleus is predicted to be slightly reduced due to an addition of $Lambda$ particle. We demonstrate that this leads to a reduction of electromagnetic transition probability, $B(E2)$, in the ground state rotational band. We also present an application of random phase approximation (RPA) to hypernuclei, and show that a new dipole mode, which we call a soft dipole $Lambda$ mode, appears in hypernuclei, which can be interpreted as an oscillation of $Lambda$ particle against the core nucleus.
100 - D. Vale , Y. F. Niu , N. Paar 2020
Spin-isospin transitions in nuclei away from the valley of stability are essential for the description of astrophysically relevant weak interaction processes. While they remain mainly beyond the reach of experiment, theoretical modeling provides important insight into their properties. In order to describe the spin-isospin response,vcthe proton-neutron relativistic quasiparticle random phase approximation (PN-RQRPA) is formulated using the relativistic density-dependent point coupling interaction, and separable pairing interaction in both the $T=1$ and $T=0$ pairing channels. By implementing recently established DD-PCX interaction with improved isovector properties relevant for the description of nuclei with neutron-to-proton number asymmetry, the isobaric analog resonances (IAR) and Gamow-Teller resonances (GTR) have been investigated. In contrast to other models that usually underestimate the IAR excitation energies in Sn isotope chain, the present model accurately reproduces the experimental data, while the GTR properties depend on the isoscalar pairing interaction strength. This framework provides not only an improved description of the spin-isospin response in nuclei, but it also allows future large scale calculations of charge-exchange excitations and weak interaction processes in stellar environment.
Novel transverse-momentum technique is used to analyse charged-particle exclusive data for collective motion in the Ar+KCl reaction at 1.8 GeV/nucl. Previous analysis of this reaction, employing the standard sphericity tensor, revealed no significant effect. In the present analysis, collective effects are observed, and they are substantially stronger than in the Cugnon cascade model, but weaker than in the hydrodynamical model.
292 - Y. Tanimura , K. Hagino , 2012
We perform three-body model calculations for a $sd$-shell hypernucleus $^{19}_{Lambda}$F ($^{17}_{Lambda}{rm O}+p+n$) and its core nucleus $^{18}$F ($^{16}{rm O}+p+n$), employing a density-dependent contact interaction between the valence proton and neutron. We find that the $B(E2)$ value from the first excited state (with spin and parity of $I^pi=3^+$) to the ground state ($I^pi=1^+$) is slightly decreased by the addition of a $Lambda$ particle, which exhibits the so called shrinkage effect of $Lambda$ particle. We also show that the excitation energy of the $3^+$ state is reduced in $^{19}_{Lambda}$F compared to $^{18}$F, as is observed in a $p$-shell nucleus $^{6}$Li. We discuss the mechanism of this reduction of the excitation energy, pointing out that it is caused by a different mechanism from that in $^{7}_{Lambda}$Li.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا