No Arabic abstract
A single closed-form analytical solution of the driven nonlinear Schr{o}dinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance.
Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump-resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.
Kerr optical frequency combs with multi-gigahertz spacing have previously been demonstrated in chip-scale microresonators, with potential applications in coherent communication, spectroscopy, arbitrary waveform generation, and radio frequency photonic oscillators. In general, the harmonics of a frequency comb are identically polarized in a single microresonator. In this work, we report that one comb in one polarization is generated by an orthogonally polarized soliton comb and two low-noise, orthogonally polarized combs interact with each other and exist simultaneously in a single microresonator. The second comb generation is attributed to the strong cross-phase modulation with the orthogonally polarized soliton comb and the high peak power of the intracavity soliton pulse. Experimental results show that a second frequency comb is excited even when a continuous wave light as a seed-with power as low as 0.1 mW-is input, while its own power level is below the threshold of comb generation. Moreover, the second comb has a concave envelope, which is different from the sech2 envelope of the soliton comb. This is due to the frequency mismatch between the harmonics and the resonant frequency. We also find that the repetition rates of these two combs coincide, although two orthogonal resonant modes are characterized by different free spectral ranges.
We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex-degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.
We demonstrate Kerr-frequency-comb generation with nanofabricated Fabry-Perot resonators with photonic-crystal-reflector (PCR) end mirrors. The PCR group-velocity-dispersion (GVD) is engineered to counteract the strong normal GVD of a rectangular waveguide fabricated on a thin, 450 nm silicon nitride device layer. The reflectors provide the resonators with both the high optical quality factor and anomalous GVD required for Kerr-comb generation. We report design, fabrication, and characterization of devices in the 1550 nm wavelengths bands, including the GVD spectrum and quality factor. Kerr-comb generation is achieved by exciting the devices with a continuous-wave (CW) laser. The versatility of PCRs enables a general design principle and a material-independent device infrastructure for Kerr-nonlinear-resonator processes, opening new possibilities for manipulation of light. Visible and multi-spectral-band resonators appear to be natural extensions of the PCR approach.
The experimental realization of a Kerr frequency comb represented the convergence of research in materials, physics, and engineering, and this symbiotic relationship continues to underpin efforts in comb innovation today. While the initial focus developing cavity-based frequency combs relied on existing microresonator architectures and classic optical materials, in recent years, this trend has been disrupted. This paper reviews the latest achievements in frequency comb generation using resonant cavities, placing them within the broader historical context of the field. After presenting well-established material systems and device designs, the emerging materials and device architectures are examined. Specifically, the unconventional material systems as well as atypical device designs that have enabled tailored dispersion profiles and improved comb performance are compared to the current state of art. The remaining challenges and future outlook for the field of cavity-based frequency combs is evaluated.