Do you want to publish a course? Click here

Sensitivity of Baikal-GVD neutrino telescope to neutrino emission toward the center of Galactic dark matter halo

120   0   0.0 ( 0 )
 Added by Sergei Demidov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse sensitivity of the gigaton volume telescope Baikal-GVD for detection of neutrino signal from dark matter annihilations or decays in the Galactic Center. Expected bounds on dark matter annihilation cross section and its lifetime are found for several annihilation/decay channels.



rate research

Read More

128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV energy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
Neutrino oscillations are a widely observed and well established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant $G_F$ with no further restrictions on its flavor structure. For the galactic dark matter profile we consider an homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light $mathcal{O}$(sub-eV--keV) or WIMP-like dark matter particle or as a new interaction with a mediator of $mathcal{O}$(sub-eV--keV) mass.
Multi-messenger astronomy is a powerful tool to study the physical processes driving the non-thermal Universe. A combination of observations in cosmic rays, neutrinos, photons of all wavelengths and gravitational waves is expected. The alert system of the Baikal-GVD detector under construction will allow for a fast, on-line reconstruction of neutrino events recorded by the Baikal-GVD telescope and - if predefined conditions are satisfied - for the formation of an alert message to other communities. The preliminary results of searches for high-energy neutrinos in coincidence with GW170817/GRB170817A using the cascade mode of neutrino detection are discussed. Two Baikal-GVD clusters were operating during 2017. The zenith angle of NGC 4993 at the detection time of the GW170817 was 93.3 degrees. No events spatially coincident with GRB170817A were found. Given the non-detection of neutrino events associated with GW170817, upper limits on the neutrino fluence were established.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array construction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the track is arguably the most precise probe of the neutrino direction attainable in Cerenkov neutrino telescopes. Muon reconstruction techniques adopted by Baikal-GVD are discussed in the present report. Performance of the muon reconstruction is studied using realistic Monte Carlo simulation of the detector. The algorithms are applied to real data from Baikal-GVD and the results are compared with simulations. The performance of the neutrino selection based on a boosted decision tree classifier is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا