Do you want to publish a course? Click here

Yukawa couplings for intersecting D-branes on non-factorisable tori

166   0   0.0 ( 0 )
 Added by Stefan Forste
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We compute Yukawa couplings in type IIa string theory compactified on a six-torus in the presence of intersecting D6-branes. The six-torus is generated by an SO(12) root lattice. Yukawa couplings are expressed as sums over worldsheet instantons. Our result extends known expressions to a non-factorisable torus. As an aside we also fill in some details for the factorisable torus and non-coprime intersection numbers.



rate research

Read More

We compute Yukawa couplings in type IIB string theory compactified on a non factorisable six-torus in the presence of D9 branes and fluxes. The setting studied in detail, is obtained by T-dualising an intersecting brane configuration of type IIA theory compactified on a torus generated by the SO(12) root lattice. Particular deformations of such torus are taken into account and provide moduli dependent couplings. Agreement with the type IIA result is found in a non trivial way. The classical type IIB calculation gives also information on a factor accessible only by quantum computations on the type IIA side.
62 - M. Herbst , A. Kling , M. Kreuzer 2003
The non-commutative geometry of deformation quantization appears in string theory through the effect of a B-field background on the dynamics of D-branes in the topological limit. For arbitrary backgrounds, associativity of the star product is lost, but only cyclicity is necessary for a description of the effective action in terms of a generalized product. In previous work we showed that this property indeed emerges for a non-associative product that we extracted from open string amplitudes in curved background fields. In the present note we extend our investigation through second order in a complete derivative expansion. We establish cyclicity with respect to the Born--Infeld measure and find a logarithmic correction that modifies the Kontsevich formula in an arbitrary background satisfying the generalized Maxwell equation. This equation is the physical equivalent of a divergence-free non-commutative parameter, which is required for cyclicity already in the associative case.
In this paper, we will consider the chiral symmetry breaking in the holographic model constructed from the intersecting brane configuration, and investigate the Nambu-Goldstone bosons associated with this symmetry breaking.
We study the effect of Scherk-Schwarz deformations on intersecting branes. Non-chiral fermions in any representation of the Chan-Paton gauge group generically acquire a tree-level mass dependent on the compactification radius and the brane wrapping numbers. This offers an elegant solution to one of the long-standing problems in intersecting-brane-world models where the ubiquitous presence of massless non-chiral fermions is a clear embarrassment for any attempt to describe the Standard Model of Particle Physics.
106 - Alan L. Carey , 2002
This paper shows how to construct anomaly free world sheet actions in string theory with $D$-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to $D$-branes and connections on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا