No Arabic abstract
This paper is dedicated to revisit the modifications caused by branes in the collapse of a stellar structure under the Snyder-Oppenheimer scheme. Due to the homogeneity and isotropy of the model, we choose study the case of a closed geometry described by $k=1$, through the tool of dynamical systems. We revisit the different components of the star and its evolution during the stellar collapse, paying particular attention to the non-local effects and the quadratic terms of the energy momentum tensor that come from branes corrections. In the same vein we realize a phase portrait together with a stability analysis with the aim of obtain information about the attractors or saddle points of the dynamical system under different initial conditions in the density parameters, remarking the parameters that come from branes contributions.
The topological structure of Schwarzschilds space-time and its maximal analytic extension are investigated in context of brane-worlds. Using the embedding coordinates, these geometries are seen as different states of the evolution of a single brane-world. Comparing the topologies and the embeddings it is shown that this evolution must be followed by a signature change in the bulk.
The Randall-Sundrum scenario, with a 1+3-dimensional brane in a 5-dimensional bulk spacetime, can be generalized in various ways. We consider the case where the Z2-symmetry at the brane is relaxed, and in addition the gravitational action is generalized to include an induced gravity term on the brane. We derive the complete set of equations governing the gravitational dynamics for a general brane and bulk, and identify how the asymmetry and the induced gravity act as effective source terms in the projected field equations on the brane. For a Friedmann brane in an anti de Sitter bulk, the solution of the Friedmann equation is given by the solution of a quartic equation. We find the perturbative solutions for small asymmetry, which has an effect at late times.
We study the geometrical and topological properties of the bulk (environment space) when we modify the geometry or topology of a brane-world. Through the characterization of a spherically symmetric space-time as a local brane-world immersed into six dimensional pseudo-Euclidean spaces, with different signatures of the bulk, we investigate the existence of a topological difference in the immersed brane-world. In particular the Schwarzschilds brane-world and its Kruskal (or Fronsdal) brane-world extension are examined from point of view of the immersion formalism. We prove that there is a change of signature of the bulk when we consider a local isometric immersion and different topologies of a brane-world in that bulk.
We study gravitational quantum corrections in supersymmetric theories with warped extra dimensions. We develop for this a superfield formalism for linearized gauged supergravity. We show that the 1-loop effective Kahler potential is a simple functional of the KK spectrum in the presence of generic localized kinetic terms at the two branes. We also present a simple understanding of our results by showing that the leading matter effects are equivalent to suitable displacements of the branes. We then apply this general result to compute the gravity-mediated universal soft mass $m_0^2$ in models where the visible and the hidden sectors are sequestered at the two branes. We find that the contributions coming from radion mediation and brane-to-brane mediation are both negative in the minimal set-up, but the former can become positive if the gravitational kinetic term localized at the hidden brane has a sizeable coefficient. We then compare the features of the two extreme cases of flat and very warped geometry, and give an outlook on the building of viable models.
We construct an exact solution for the spherical gravitational collapse in a single coordinate patch. To describe the dynamics of collapse, we use a generalized form of the Painleve-Gullstrand coordinates in the Schwarzschild spacetime. The time coordinate of the form is the proper time of a free-falling observer so that we can describe the collapsing star not only outside but also inside the event horizon in a single coordinate patch. We show the both solutions corresponding to the gravitational collapse from infinity and from a finite radius.