Do you want to publish a course? Click here

The Phase Diagram in Electron-Doped LCCO

161   0   0.0 ( 0 )
 Added by Hassan Saadaoui
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconductors are a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides(cuprates) are the most studied class of superconductors, composed of two-dimensional CuO2 planes separated by other layers which control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. In this paper, we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La2-xCexCuO4-d where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin polarized muons, we find static magnetism disappears close to where superconductivity begins and well below the doping where dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.



rate research

Read More

108 - Heshan Yu , Ge He , Ziquan Lin 2015
Emergency of superconductivity at the instabilities of antiferromagnetism (AFM), spin/charge density waves has been widely recognized in unconventional superconductors. In copper-oxide superconductors, spin fluctuations play a predominant role in electron pairing with electron dopants yet composite orders veil the nature of superconductivity for hole-doped family. However, in electron-doped ones the ending point of AFM is still in controversy for different probes or its sensitivity to oxygen content. Here, by carefully tuning the oxygen content, a systematic study of Hall signal and magnetoresistivity up to 58 Tesla on optimally doped La2-xCexCuO4+-{delta} (x = 0.10) thin films identifies two characteristic temperatures at 62.5+-7.5 K and 25+-5 K. The former is quite robust whereas the latter becomes flexible with increasing magnetic field, thereby linked to two- and three-dimensional AFM, evident from the multidimensional phase diagram as a function of oxygen as well as Ce dopants. Consequently, the observation of extended AFM phase in contrast to {mu}SR probe corroborates an elevated critical doping in field, providing an unambiguous picture to understand the interactions between AFM and superconductivity.
Second magnetization peak (SMP) in hole-doped cuprates and iron pnictide superconductors has been widely explored. However, similar feature in the family of electron-doped cuprates is not common. Here, we report the vortex dynamics study in the single crystal of an electron-doped cuprate Pr$_{0.87}$LaCe$_{0.13}$CuO$_4$ superconductor using dc magnetization measurements. A SMP feature in the isothermal $M(H)$ was observed for $H$$parallel$$ab$-planes. On the other hand, no such feature was observed for $H$$parallel$$c$-axis in the crystal. Using magnetic relaxation data, a detailed analysis of activation pinning energy via collective creep theory suggests an elastic to plastic creep crossover across the SMP. Moreover, for $H$$parallel$$ab$, a peak in the temperature dependence of critical current density is also observed near 7 K, which is likely be related to a dimensional crossover (3D-2D) associated to the emergence of Josephson vortices at low temperatures. The anisotropy parameter obtained $gamma$ $approx$ 8-11 indicates the 3D nature of vortex lattice mainly for $H$$parallel$$c$-axis. The $H$-$T$ phase diagrams for $H$$parallel$$c$ and $H$$parallel$$ab$ are presented.
379 - F. Kurth , K. Iida , S. Trommler 2012
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2 thin films with varying Co concentration, we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2 shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.
Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. These data delineate an $x-T$ phase diagram in which the single magnetic/structural phase transition that is observed for undoped BaFe$_2$As$_2$ at 134 K apparently splits into two distinct phase transitions, both of which are rapidly suppressed with increasing Co concentration. Superconductivity emerges for Co concentrations above $x sim 0.025$, and appears to coexist with the broken symmetry state for an appreciable range of doping, up to $x sim 0.06$. The optimal superconducting transition temperature appears to coincide with the Co concentration at which the magnetic/structural phase transitions are totally suppressed, at least within the resolution provided by the finite step size between crystals prepared with different doping levels. Superconductivity is observed for a further range of Co concentrations, before being completely suppressed for $x sim 0.018$ and above. The form of this $x-T$ phase diagram is suggestive of an association between superconductivity and a quantum critical point arising from suppression of the magnetic and/or structural phase transitions.
502 - F.L. Ning , K. Ahilan , T. Imai 2008
We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low frequency spin fluctuations. The optimum superconducting phase emerges at x_c~0.08 when the tendency toward spin ordering completely diminishes. Our findings point toward the presence of a quantum critical point near x_c between the SDW (spin density wave) and superconducting phases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا