No Arabic abstract
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the knee of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
The aim of the Yakutsk array enhancement project is to create an instrument to study the highest-energy galactic cosmic rays (CRs) -- their sources, energy spectrum, and mass composition. Additionally, there will be unique capabilities for investigations in the transition region between galactic and extragalactic components of CRs. Using the well-developed imaging atmospheric Cherenkov telescope technique adapted to the energy region $E>10^{15}$ eV, we plan to measure the longitudinal structure parameters of the shower, e.g., angular and temporal distributions of the Cherenkov signal related to $X_{max}$ and the mass composition of CRs. The main advantages of the Yakutsk array, such as its multi-component measurements of extensive air showers, and model-independent CR energy estimation based on Cherenkov light measurements, will be inherited by the instrument to be created.
There are some discrepancies in the results on energy spectrum from Yakutsk, AGASA, and HiRes experiments. In this work differential energy spectrum of primary cosmic rays based on the Yakutsk EAS Array data is presented. For the largest events values of $S_{600}$ and axes coordinates have been obtained using revised lateral distribution function. Simulation of converters response at large distances showed no considerable underestimation of particle density. Complex shape of spectrum in region of $E > 10^{17}$ eV is confirmed. After adjustment of parameters and additional exposition at the Yakutsk array there are three events with energy $E > 10^{20}$ eV.
The {it Fermi} Large Area Telescope has recently discovered two giant gamma-ray bubbles which extend north and south of the Galactic center with diameters and heights of the order of $Hsim 10$ kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A$^*$, with a capture rate of $tau_{rm cap}^{-1}sim 3times 10^{-5}$ yr$^{-1}$ and an energy release of $Wsim 3times 10^{52}$ erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of $usim 10^8$ cm s$^{-1}$. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than $E> 10^{15}$ eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the ``knee of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble $D_Bsim 3times 10^{30}$ cm$^2$ s$^{-1}$, we can reproduce the spectral index of the spectrum beyond the knee and within. The conversion efficiency from shock energy of the bubble into CR energy is about 10%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.
We give an overview of the SPHERE experiment based on detection of reflected Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the energy region E>10^{15} eV. A brief history of the reflected Cherenkov light technique is given; the observations carried out with the SPHERE-2 detector are summarized; the methods of the experimental datasample analysis are described. The first results on the primary cosmic ray all-nuclei energy spectrum and mass composition are presented. Finally, the prospects of the SPHERE experiment and the reflected Cherenkov light technique are given.
The amplitude and phase of the cosmic ray anisotropy are well established experimentally between 10^{11} eV and 10^{14} eV. The study of their evolution into the energy region 10^{14}-10^{16} eV can provide a significant tool for the understanding of the steepening (knee) of the primary spectrum. In this letter we extend the EAS-TOP measurement performed at E_0 around 10^{14} eV, to higher energies by using the full data set (8 years of data taking). Results derived at about 10^{14} and 4x10^{14} eV are compared and discussed. Hints of increasing amplitude and change of phase above 10^{14} eV are reported. The significance of the observation for the understanding of cosmic ray propagation is discussed.