Do you want to publish a course? Click here

Validation of equilibrium tools on the COMPASS tokamak

136   0   0.0 ( 0 )
 Added by Jakub Urban
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is required for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code [L.C. Appel et al., EPS 2006, P2.184], the free-boundary equilibrium code FREEBIE [J.-F. Artaud, S.H. Kim, EPS 2012, P4.023], and a rapid plasma boundary reconstruction code VacTH [B. Faugeras et al., PPCF 56, 114010 (2014)]. We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated.



rate research

Read More

Uncertainties and errors in magnetic equilibrium reconstructions are a wide-spread problem in interpreting experimental data measured in the tokamak edge. This study demonstrates errors in EFIT++ reconstructions performed on the COMPASS tokamak by comparing the outer midplane separatrix position to the Velocity Shear Layer (VSL) position. The VSL is detected as the plasma potential peak measured by a reciprocating ball-pen probe. A subsequent statistical analysis of nearly 400 discharges shows a strong systematic trend in the reconstructed separatrix position relative to the VSL, where the primary factors are plasma triangularity and the magnetic axis radial position. This dependency is significantly reduced after the measuring coils positions as recorded in EFIT input are optimised to provide a closer match between the synthetic coil signal calculated by the Biot-Savart law in a vacuum discharge and the actual coil signal. In conclusion, we suggest that applying this optimisation may lead to more accurate and reliable reconstructions of the COMPASS equilibrium, which would have a positive impact on the accuracy of measurement analysis performed in the edge plasma.
Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The source distributions are fixed poloidally, but their scale is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filament model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. An accompanying field perturbation produced by 3D eddy currents on the plasma surface with primarily n=2, m=1 character is also predicted for these equilibria.
119 - Robert W. Johnson 2011
The neoclassical prescription to use an equation of motion to determine the electrostatic field within a tokamak plasma is fraught with difficulties. Herein we examine two popular expressions for the equilibrium electrostatic field so determined and show that one fails to withstand a formal scrutiny thereof while the other fails to respect the vector nature of the diamagnetic current. Reconsideration of the justification for the presence of the equilibrium electrostatic field indicates that no field is needed for a neutral plasma when considering the net bound current defined as the curl of the magnetization. With any shift in the toroidal magnetic flux distribution, a dynamic electric field is generated with both radial and poloidal components, providing an alternate explanation for any measurements thereof.
100 - P.-A. Gourdain 2017
The Hall term has often been neglected in MHD codes as it is difficult to compute. Nevertheless setting it aside for numerical reasons led to ignoring it altogether. This is especially problematic when dealing with tokamak physics as the Hall term cannot be neglected as this paper shows.
Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With $p_parallel/p_perp approx 1.5$, $p_perp$ can vary 20% on $s=0.5$ flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which $p^*=(p_parallel + p_perp)/2$, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with $p_parallel/p_perp approx 1.25$, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا