We present results for the mass splittings of low-lying charmonium states from a calculation with Wilson clover valence quarks with the Fermilab interpretation on an asqtad sea. We use five lattice spacings and two values of the light sea quark mass to extrapolate our results to the physical point. Sources of systematic uncertainty in our calculation are discussed and we compare our results for the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin orbit and tensor splittings to experiment.
We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge action. We use five lattice spacings and two values of the light sea quark mass to extrapolate the results to the physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the determination of the energies of the ground states in each channel. We present and implement a continuum extrapolation within the Fermilab interpretation, based on power-counting arguments, and thoroughly discuss all sources of systematic uncertainty. We compare our results for various mass splittings with their experimental values, namely, the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin-orbit and tensor splittings. Given the uncertainty related to the width of the resonances, we find excellent agreement.
We present results from an ongoing study of mass splittings of the lowest lying states in the charmonium system. We use clover valence charm quarks in the Fermilab interpretation, an improved staggered (asqtad) action for sea quarks, and the one-loop, tadpole-improved gauge action for gluons. This study includes five lattice spacings, 0.15, 0.12, 0.09, 0.06, and 0.045 fm, with two sets of degenerate up- and down-quark masses for most spacings. We use an enlarged set of interpolation operators and a variational analysis that permits study of various low-lying excited states. The masses of the sea quarks and charm valence quark are adjusted to their physical values. This large set of gauge configurations allows us to extrapolate results to the continuum physical point and test the methodology.
We present results on the spin and quark content of the nucleon using $N_f=2$ twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connected and disconnected contributions. We provide results for the axial charge, quark and gluon momentum fraction as well as the light, strange and charm $sigma$-terms.
We present a QCD calculation of the $u$, $d$ and $s$ scalar quark contents of nucleons based on $47$ lattice ensembles with $N_f = 2+1$ dynamical sea quarks, $5$ lattice spacings down to $0.054,text{fm}$, lattice sizes up to $6,text{fm}$ and pion masses down to $120,text{MeV}$. Using the Feynman-Hellmann theorem, we obtain $f^N_{ud} = 0.0405(40)(35)$ and $f^N_s = 0.113(45)(40)$, which translates into $sigma_{pi N}=38(3)(3),text{MeV}$, $sigma_{sN}=105(41)(37),text{MeV}$ and $y_N=0.20(8)(8)$ for the sigma terms and the related ratio, where the first errors are statistical and the second are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text).
We present an investigation of the electromagnetic pion form factor, $F_pi(Q^2)$, at small values of the four-momentum transfer $Q^2$ ($lesssim 0.25$ GeV$^2$), based on the gauge configurations generated by European Twisted Mass Collaboration with $N_f = 2$ twisted-mass quarks at maximal twist including a clover term. Momentum is injected using non-periodic boundary conditions and the calculations are carried out at a fixed lattice spacing ($a simeq 0.09$ fm) and with pion masses equal to its physical value, 240 MeV and 340 MeV. Our data are successfully analyzed using Chiral Perturbation Theory at next-to-leading order in the light-quark mass. For each pion mass two different lattice volumes are used to take care of finite size effects. Our final result for the squared charge radius is $langle r^2 rangle_pi = 0.443~(29)$ fm$^2$, where the error includes several sources of systematic errors except the uncertainty related to discretization effects. The corresponding value of the SU(2) chiral low-energy constant $overline{ell}_6$ is equal to $overline{ell}_6 = 16.2 ~ (1.0)$.