Do you want to publish a course? Click here

INTEGRAL 11-year hard X-ray survey above 100 keV

165   0   0.0 ( 0 )
 Added by Roman Krivonos
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of all sky survey, performed with data acquired by the IBIS telescope onboard the INTEGRAL observatory over eleven years of operation, at energies above 100 keV. A catalogue of detected sources includes 132 objects. The statistical sample detected on the time-averaged 100-150 keV map at a significance above 5 sigma contains 88 sources: 28 AGNs, 38 LMXBs, 10 HMXBs and 12 rotation-powered young X-ray pulsars. The catalogue includes also 15 persistent sources, which were registered with the significance 4 sigma < S/N < 5 in hard X-rays, but at the same time were firmly detected (>12 sigma) in the 17-60 keV energy band. All sources from these two groups are known X-ray emitters, that means that the catalogue has 100% purity in respect to them. Additionally, 29 sources were found in different time intervals. In the context of the survey we present a hardness ratio of galactic and extragalactic sources, a LMXBs longitudinal asymmetry and a number-flux relation for non-blazar AGNs. At higher energies, in the 150-300 keV energy band, 25 sources have been detected with a signal-to-noise ratio S/N > 5 sigma, including 7 AGNs, 13 LMXBs, 3 HMXBs, and 2 rotation-powered pulsars. Among LMXBs and HMXBs we identified 12 black hole candidates (BHC) and 4 neutron star (NS) binaries.



rate research

Read More

Context. The INTEGRAL observatory operating in a hard X-ray/gamma domain has gathered a large observational data set over nine years starting in 2003. Most of the observing time was dedicated to the Galactic source population study, making possible the deepest Galactic survey in hard X-rays ever compiled. Aims. We aim to perform a Galactic survey that can be used as the basis of Galactic source population studies, and perform mapping of the Milky Way in hard X-rays over the maximum exposure available at |b|<17.5 deg. Methods. We used sky reconstruction algorithms especially developed for the high quality imaging of INTEGRAL/IBIS data. Results. We present sky images, sensitivity maps, and catalogs of detected sources in the three energy bands 17-60, 17-35, and 35-80 keV in the Galactic plane at |b|<17.5 deg. The total number of sources in the reference 17-60 keV band includes 402 objects exceeding a 4.7 sigma detection threshold on the nine-year time-averaged map. Among the identified sources with known and tentatively identified natures, 253 are Galactic objects (108 low-mass X-ray binaries, 82 high-mass X-ray binaries, 36 cataclysmic variables, and 27 are of other types), and 115 are extragalactic objects, including 112 active galactic nuclei (AGNs) and 3 galaxy clusters. The sample of Galactic sources with S/N>4.7 sigma has an identification completeness of ~92%, which is valuable for population studies. Since the survey is based on the nine-year sky maps, it is optimized for persistent sources and may be biased against finding transients.
This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects which strongly limit sensitivity in the region of the Galactic Plane (GP), especially in the crowded field of the Galactic Center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic Ridge X-ray Emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7E-12 erg/s/cm2 ~0.26 mCrab in the 17-60 keV band at a 5 sigma detection level. The survey covers 90% of the sky down to the flux limit of 6.2E-11 erg/s/cm2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6E-12 erg/s/cm2 (~0.60 mCrab).
This paper is the second in a series devoted to the hard X-ray (17-60 keV) whole sky survey performed by the INTEGRAL observatory over seven years. Here we present a catalog of detected sources which includes 521 objects, 449 of which exceed a 5 sigma detection threshold on the time-averaged map of the sky, and 53 were detected in various subsamples of exposures. Among the identified sources with known and suspected nature, 262 are Galactic (101 low-mass X-ray binaries, 95 high-mass X-ray binaries, 36 cataclysmic variables, and 30 of other types) and 219 are extragalactic, including 214 active galactic nuclei (AGNs), 4 galaxy clusters, and galaxy ESO 389-G 002. The extragalactic (|b|>5 deg) and Galactic (|b|<5 deg) persistently detected source samples are of high identification completeness (respectively ~96% and ~94%) and valuable for population studies.
247 - David M. Smith 2010
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detectors in space are either scintillators or solid-state detectors. The choice of detector technology depends on the energy range of interest, expected levels of signal and background, required energy and spatial resolution, particle environment on orbit, and other factors. This section covers the materials and configurations commonly used from 10 keV to > 1 GeV.
185 - M. Feroci 2009
SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23$^{rd}$ April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its $sim$steradian-wide field of view and its $sim$15 mCrab day-sensitivity, SuperAGILE is also well suited for the long-term monitoring of Galactic compact objects and the detection of bright transients. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by the experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. In this paper we report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا