Do you want to publish a course? Click here

Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

120   0   0.0 ( 0 )
 Added by Gavin Dalton
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final design and early procurement phase, with commissioning at the telescope expected in 2017.



rate research

Read More

WEAVE is a 1000-fiber multi-object spectroscopic facility for the 4.2~m William Herschel Telescope. It will feature a double-headed pick-and-place fiber positioning robot comprising commercially available robotic axes. This paper presents results on the performance of these axes, obtained by testing a prototype system in the laboratory. Positioning accuracy is found to be better than the manufacturers published values for the tested cases, indicating that the requirement for a maximum positioning error of 8.0~microns is achievable. Field reconfiguration times well within the planned 60 minute observation window are shown to be likely when individual axis movements are combined in an efficient way.
189 - Marc Balcells 2010
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
A rationale is presented for the use of a relatively low-altitude Rayleigh Laser Guide Star to provide partial adaptive optics correction across a large fraction of the sky on the 4.2m William Herschel Telescope. The scientific motivation is highlighted and supported by model calculations. An overview the technical implementation of the system is presented.
437 - Isaac Morales 2011
We present an optimized algorithm for assigning fibers to targets in next-generation fiber-fed multi-object spectrographs. The method, that we named draining algorithm, ensures that the maximum number of targets in a given target field is observed in the first few tiles. Using randomly distributed targets and mock galaxy catalogs we have estimated that the gain provided by the draining algorithm as compared to a random assignment can be as much as 2% for the first tiles. This would imply for a survey like BigBOSS saving for observation several hundred thousand objects or, alternatively, reducing the covered area in ~350 sq. deg. An important advantage of this method is that the fiber collision problem can be solved easily and in an optimal way. We also discuss additional optimizations of the fiber positioning process. In particular, we show that allowing for rotation of the focal plane can improve the efficiency of the process in ~3.5-4.5% even if only small adjustments are permitted (up to 2 deg). For instruments that allow large rotations of the focal plane the expected gain increases to ~5-6%. These results, therefore, strongly support focal plane rotation in future spectrographs, as far as the efficiency of the fiber positioning process is concerned. Finally, we discuss on the implications of our optimizations and provide some basic hints for an optimal survey strategy based on the number of targets per positioner.
391 - C.L. Carilli 2015
We summarize the design, capabilities, and some of the priority science goals of a next generation Very Large Array (ngVLA). The ngVLA is an interferometric array with 10x larger effective collecting area and 10x higher spatial resolution than the current VLA and the Atacama Large Millimeter Array (ALMA), optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA opens a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcecond resolution, as well as unprecedented broad band continuum polarimetric imaging of non-thermal processes. The continuum resolution will reach 9mas at 1cm, with a brightness temperature sensitivity of 6K in 1 hour. For spectral lines, the array at 1 resolution will reach 0.3K surface brightness sensitivity at 1cm and 10 km/s spectral resolution in 1 hour. These capabilities are the only means with which to answer a broad range of critical scientific questions in modern astronomy, including direct imaging of planet formation in the terrestrial-zone, studies of dust-obscured star formation and the cosmic baryon cycle down to pc-scales out to the Virgo cluster, making a cosmic census of the molecular gas which fuels star formation back to first light and cosmic reionization, and novel techniques for exploring temporal phenomena from milliseconds to years. The ngVLA is optimized for observations at wavelengths between the superb performance of ALMA at submm wavelengths, and the future SKA1 at few centimeter and longer wavelengths. This memo introduces the project. The science capabilities are outlined in a parallel series of white papers. We emphasize that this initial set of science goals are simply a starting point for the project. We invite comment on these programs, as well as new ideas, through our public forum link on the ngVLA web page https://science.nrao.edu/futures/ngvla
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا