We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and first Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).