No Arabic abstract
We demonstrate photodissociation of BeH$^+$ ions within a Coulomb crystal of thousands of $^9$Be$^+$ ions confined in a Penning trap. Because BeH$^+$ ions are created via exothermic reactions between trapped, laser-cooled Be$^+$($^2text{P}_{3/2}$) and background H$_2$ within the vacuum chamber, they represent a major contaminant species responsible for infidelities in large-scale trapped-ion quantum information experiments. The rotational-state-insensitive dissociation scheme described here makes use of 157 nm photons to produce Be$^+$ and H as products, thereby restoring Be$^+$ ions without the need for reloading. This technique facilitates longer experiment runtimes at a given background H$_2$ pressure, and may be adapted for removal of MgH$^+$ and AlH$^+$ impurities.
We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)
We study the dynamics of a supersonic molecular beam in a low-finesse optical cavity and demonstrate that most molecules in the beam can be decelerated to zero central velocity by the intracavity optical field in a process analogous to electrostatic Stark deceleration. We show that the rapid switching of the optical field for slowing the molecules is automatically generated by the cavity-induced dynamics. We further show that $sim1%$ of the molecules can be optically trapped at a few millikelvin in the same cavity.
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potential energy curves (PECs) that are asymptotically connected with Rydberg $nP$- or $nD$-states of rubidium or cesium. The PECs exhibit deep, long-range wells which support many vibrational states of Rydberg-atom-ion molecules (RAIMs). We consider photo-association of RAIMs in both the weak and the strong optical-coupling regimes between initial and Rydberg states of the neutral atom. Experimental considerations for the realization of RAIMs are discussed.
A detailed theoretical framework for highly excited Rydberg molecules is developed based on the generalized local frame transformation. Our approach avoids the use of pseudopotentials and yields analytical expressions for the body-frame reaction matrix. The latter is used to obtain the molecular potential energy curves, but equally it can be employed for photodissociation, photoionization, or other processes. To illustrate the reliability and accuracy of our treatment we consider the Rb$^*-$Rb Rydberg molecule and compare our treatment with state-of-the-art alternative approaches. As a second application, the present formalism is used to re-analyze the vibrational spectra of Sr$^*-$Sr molecules, providing additional physical insight into their properties and a comparison of our results with corresponding measurements.
We investigate the photo-doubleionization of $H_2$ molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the dielectron) does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved.