Do you want to publish a course? Click here

MT2 to the Rescue -- Searching for Sleptons in Compressed Spectra at the LHC

157   0   0.0 ( 0 )
 Added by Zhenyu Han
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We propose a novel method for probing sleptons in compressed spectra at hadron colliders. The process under study is slepton pair production in R-parity conserving supersymmetry, where the slepton decays to a neutralino LSP of mass close to the slepton mass. In order to pass the trigger and obtain large missing energy, an energetic mono-jet is required. Both leptons need to be detected in order to suppress large standard model backgrounds with one charged lepton. We study variables that can be used to distinguish the signal from the remaining major backgrounds, which include tt, WW+jet, Z+jet, and single top production. We find that the dilepton MT2, bound by the mass difference, can be used as an upper bound to efficiently reduce the backgrounds. It is estimated that sleptons with masses up to about 150 GeV can be discovered at the 14 TeV LHC with 100/fb integrated luminosity.



rate research

Read More

Direct searches for electroweak pair production of new particles at the LHC are a difficult proposition, due to the large background and low signal cross sections. We demonstrate how these searches can be improved by a combination of new razor variables and shape analysis of signal and background kinematics. We assume that the pair-produced particles decay to charged leptons and missing energy, either directly or through a W boson. In both cases the final state is a pair of opposite sign leptons plus missing transverse energy. We estimate exclusion reach in terms of sleptons and charginos as realized in minimal supersymmetry. We compare this super-razor approach in detail to analyses based on other kinematic variables, showing how the super-razor uses more of the relevant kinematic information while achieving higher selection efficiency on signals, including cases with compressed spectra.
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different children particles. In this more general approach, the endpoint MT2max of the MT2 distribution now gives the mass Mp(Mc(a),Mc(b)) of the parent particle as a function of two input children masses Mc(a) and Mc(b). We propose two methods for an independent determination of the individual children masses Mc(a) and Mc(b). First, in the presence of upstream transverse momentum P(UTM) the corresponding function Mp(Mc(a),Mc(b),P(UTM)) is independent of P(UTM) at precisely the right values of the children masses. Second, the previously discussed MT2 kink is now generalized to a ridge on the 2-dimensional surface Mp(Mc(a),Mc(b)). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.
We investigate the potential of LHC resonance searches in leptonic final states to probe the $Z$ in the minimal $U(1)_{B-L}$ model. Considering the current constraints on the $Z$ in terms of its mass $m_{Z}$ and the associated gauge coupling $g_{B-L}$ as well as constraints in the Higgs sector, we analyse the potential of dilepton and four lepton final states for $Z$ production. This includes Drell-Yan production, Higgs mediated decays and final state radiation processes concentrating only on the ATLAS and CMS detectors at the LHC. We show that the four-lepton final state is sensitive to $m_{Z}$ as low as 0.25 GeV. Furthermore, setting the Higgs mixing to $sinalpha = 0.3$, this final state has a strong sensitivity and it probes regions of parameter space where the $Z$ is long-lived. We demonstrate the sensitivity at the High Luminosity LHC and comment on the potential of probing displaced vertices due to long-lived $Z$. Finally, we also comment on the strength of $Z$ and Higgs mediated heavy neutrino processes by taking into account the constraints derived.
Many models of dark matter predict long-lived particles (LLPs) that can give rise to striking signatures at the LHC. Existing searches for displaced vertices are however tailored towards heavy LLPs. In this work we show that this bias severely affects their sensitivity to LLPs with masses at the GeV scale. To illustrate this point we consider two dark sector models with light LLPs that decay hadronically: a strongly-interacting dark sector with long-lived exotic mesons, and a Higgsed dark sector with a long-lived dark Higgs boson. We study the sensitivity of an existing ATLAS search for displaced vertices and missing energy in these two models and find that current track and vertex cuts result in very low efficiency for light LLPs. To close this gap in the current search programme we suggest two possible modifications of the vertex reconstruction and the analysis cuts. We calculate projected exclusion limits for these modifications and show that they greatly enhance the sensitivity to LLPs with low mass or short decay lengths.
The sensitivity to dark matter signals at neutrino experiments is fundamentally challenged by the neutrino rates, as they leave similar signatures in their detectors. As a way to improve the signal sensitivity, we investigate a dark matter search strategy which utilizes the timing and energy spectra to discriminate dark matter from neutrino signals at low-energy, pulsed-beam neutrino experiments. This strategy was proposed in our companion paper arXiv:1906.10745, which we apply to potential searches at COHERENT, JSNS$^2$, and CCM. These experiments are not only sources of neutrinos but also high intensity sources of photons. The dark matter candidate of interest comes from the relatively prompt decay of a dark sector gauge boson which may replace a Standard-Model photon, so the delayed neutrino events can be suppressed by keeping prompt events only. Furthermore, prompt neutrino events can be rejected by a cut in recoil energy spectra, as their incoming energy is relatively small and bounded from above while dark matter may deposit a sizable energy beyond it. We apply the search strategy of imposing a combination of energy and timing cuts to the existing CsI data of the COHERENT experiment as a concrete example, and report a mild excess beyond known backgrounds. We then investigate the expected sensitivity reaches to dark matter signals in our benchmark experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا