Diffraction by an impedance strip II. Solving Riemann-Hilbert problems by OE-equation method


Abstract in English

The current paper is the second part of a series of two papers dedicated to 2D problem of diffraction of acoustic waves by a segment bearing impedance boundary conditions. In the first part some preliminary steps were made, namely, the problem was reduced to two matrix Riemann-Hilbert problem. Here the Riemann-Hilbert problems are solved with the help of a novel method of OE-equations. Each Riemann-Hilbert problem is embedded into a family of similar problems with the same coefficient and growth condition, but with some other cuts. The family is indexed by an artificial parameter. It is proven that the dependence of the solution on this parameter can be described by a simple ordinary differential equation (ODE1). The boundary conditions for this equation are known and the inverse problem of reconstruction of the coefficient of ODE1 from the boundary conditions is formulated. This problem is called the OE-equation. The OE-equation is solved by a simple numerical algorithm.

Download