Do you want to publish a course? Click here

The properties of XO-5b and WASP-82b redetermined using new high-precision transit photometry and global data analyses

100   0   0.0 ( 0 )
 Added by Alexis Smith
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents new transit photometry from the Isaac Newton Telescope of two transiting exoplanetary systems, XO-5 and WASP-82. In each case the new transit light curve is more precise than any other of that system previously published. The new data are analysed alongside previously-published photometry and radial velocities, resulting in an improved orbital ephemeris and a refined set of system parameters in each case. The observational baseline of XO-5 is extended by very nearly four years, resulting in a determination of the orbital period of XO-5b to a precision of just 50 ms. The mass and radius of XO-5b are 1.19$pm$0.03 and 1.14$pm$0.03 times those of Jupiter, respectively. The light curve of WASP-82 is only the second published for this system. The planetary mass is 1.25$pm$0.05 $M_{rm Jup}$, and the radius is 1.71$pm$0.08 $M_{rm Jup}$.



rate research

Read More

We have observed 7 new transits of the `hot Jupiter WASP-5b using a 61 cm telescope located in New Zealand, in order to search for transit timing variations (TTVs) which can be induced by additional bodies existing in the system. When combined with other available photometric and radial velocity (RV) data, we find that its transit timings do not match a linear ephemeris; the best fit chi^2 values is 32.2 with 9 degrees of freedom which corresponds to a confidence level of 99.982 % or 3.7 sigma. This result indicates that excess variations of transit timings has been observed, due either to unknown systematic effects or possibly to real TTVs. The TTV amplitude is as large as 50 s, and if this is real, it cannot be explained by other effects than that due to an additional body or bodies. From the RV data, we put an upper limit on the RV amplitude caused by the possible secondary body (planet) as 21 m s^{-1}, which corresponds to its mass of 22-70 M_{Earth} over the orbital period ratio of the two planets from 0.2 to 5.0. From the TTVs data, using the numerical simulations, we place more stringent limits down to 2 M_{Earth} near 1:2 and 2:1 mean motion resonances (MMRs) with WASP-5b at the 3 sigma level, assuming that the two planets are co-planer. We also put an upper limit on excess of Trojan mass as 43 M_{Earth} (3 sigma) using both RV and photometric data. We also find that if the possible secondary planet has non- or a small eccentricity, its orbit would likely be near low-order MMRs. Further follow-up photometric and spectroscopic observations will be required to confirm the reality of the TTV signal, and results such as these will provide important information for the migration mechanisms of planetary systems.
We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers. Our new data for WASP-15 comprise observations of one transit simultaneously in four optical passbands using GROND on the MPG/ESO 2.2m telescope, plus coverage of half a transit from DFOSC on the Danish 1.54m telescope, both at ESO La Silla. For WASP-16 we present observations of four complete transits, all from the Danish telescope. We use these new data to refine the measured physical properties and orbital ephemerides of the two systems. Whilst our results are close to the originally-determined values for WASP-15, we find that the star and planet in the WASP-16 system are both larger and less massive than previously thought.
We present time-series photometric observations of thirteen transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5 to 1.2 mmag relative to their best-fitting geometric models. We used these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.
We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55b is the most discrepant with a mass of 0.63 Mjup and a radius of 1.34 Rjup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 +/- 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of lambda = 6 +/- 11 degrees. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.
We present an analysis of the Qatar-1 and TrES-5 transiting exoplanetary systems, which contain Jupiter-like planets on short-period orbits around K-dwarf stars. Our data comprise a total of 20 transit light curves obtained using five medium-class telescopes, operated using the defocussing technique. The average precision we reach in all our data is $RMS_{Q} = 1.1$ mmag for Qatar-1 ($V = 12.8$) and $RMS_{T} = 1.0$ mmag for TrES-5 ($V = 13.7$). We use these data to refine the orbital ephemeris, photometric parameters, and measured physical properties of the two systems. One transit event for each object was observed simultaneously in three passbands ($gri$) using the BUSCA imager. The QES survey light curve of Qatar-1 has a clear sinusoidal variation on a period of $P_{star} = 23.697 pm 0.123$,d, implying significant starspot activity. We searched for starspot crossing events in our light curves, but did not find clear evidence in any of the new datasets. The planet in the Qatar-1 system did not transit the active latitudes on the surfaces of its host star. Under the assumption that $P_{star}$ corresponds to the rotation period of Qatar-1,A, the rotational velocity of this star is very close to the $v sin i_star$ value found from observations of the Rossiter-McLaughlin effect. The low projected orbital obliquity found in this system thus implies a low absolute orbital obliquity, which is also a necessary condition for the transit chord of the planet to avoid active latitudes on the stellar surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا