Do you want to publish a course? Click here

Universal scaling of the 3:2 twin-peak quasi-periodic oscillation frequencies with black hole mass and spin revisited

75   0   0.0 ( 0 )
 Added by Xin-Lin Zhou
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss further observational support of an idea formulated a decade ago by Abramowicz, Klu{z}niak, McClintock and Remillard. They demonstrated that the 3:2 pairs of frequencies of the twin-peak black hole (BH) high-frequency quasi-periodic oscillations (QPOs) scale inversely with the BH masses and that the scaling covers the entire range from stellar to supermassive BHs. For this reason, they believed that the QPOs may be used for accurate measurements of masses and spins of BHs.

rate research

Read More

Estimations of black hole spin in the three Galactic microquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on spectral and timing X-ray measurements and various theoretical concepts. Among others, a non-linear resonance between axisymmetric epicyclic oscillation modes of an accretion disc around a Kerr black hole has been considered as a model for the observed high-frequency quasi-periodic oscillations (HF QPOs). Estimates of spin predicted by this model have been derived based on the geodesic approximation of the accreted fluid motion. Here we assume accretion flow described by the model of a pressure-supported torus and carry out related corrections to the mass-spin estimates. We find that for dimensionless black hole spin a<0.9, the resonant eigenfrequencies are very close to those calculated for the geodesic motion. Their values slightly grow with increasing torus thickness. These findings agree well with results of a previous study carried out in the pseudo-Newtonian approximation. The situation becomes different for a>0.9, in which case the resonant eigenfrequencies rapidly decrease as the torus thickness increases. We conclude that the assumed non-geodesic effects shift the lower limit of the spin, implied for the three microquasars by the epicyclic model and independently measured masses, from a~0.7 to a~0.6. Their consideration furthermore confirms compatibility of the model with the rapid spin of GRS 1915+105 and provides highly testable predictions of the QPO frequencies. Individual sources with a moderate spin (a<0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies than sources with a near-extreme spin (a~1). This should be further examined using the large amount of high-resolution data expected to become available with the next generation of X-ray instruments, such as the proposed Large Observatory for X-ray Timing (LOFT).
We consider twin-peak quasi-periodic oscillations observed in the accreting low-mass neutron star binaries and explore restrictions to central compact object properties that are implied by various QPO models. For each model and each source, the consideration results in a specific relation between the compact object mass $M$ and the angular-momentum $j$ rather than in their single preferred combination. Moreover, restrictions on the models resulting from observations of the low-frequency sources are weaker than those in the case of the high-frequency sources.
We performed a global study on the timing and spectral properties of type-B quasi-periodic oscillations (QPOs) in the outbursts of black hole X-ray binaries. The sample is built based on the observations of {it Rossi X-ray Timing Explorer}, via searching in the literature in RXTE era for all the identified type-B QPOs. To enlarge the sample, we also investigated some type-B QPOs that are reported but not yet fully identified. Regarding to the time lag and hard/soft flux ratio, we found that the sources with type-B QPOs behave in two subgroups. In one subgroup, type-B QPO shows a hard time lag that firstly decreases and then reverse into a soft time lag along with softening of the energy spectrum. In the other subgroup, type-B QPOs distribute only in a small region with hard time lag and relatively soft hardness. These findings may be understood with a diversity of the homogeneity showing up for the hot inner flow of different sources. We confirm the universality of a positive relation between the type-B QPO frequency and the hard component luminosity in different sources. We explain the results by considering that the type-B QPO photons are produced in the inner accretion flow around the central black hole, under a local Eddington limit. Using this relationship, we derived an mass estimation of $9.3-27.1$ $rm{M_{odot}}$ for the black hole in H 1743-322.
We present a systematic spectral-timing analysis of a fast appearance/disappearance of a type-B quasi-periodic oscillation (QPO), observed in four NICER observations of MAXI J1348-630. By comparing the spectra of the period with and without the type-B QPO, we found that the main difference appears at energy bands above ~2 keV, suggesting that the QPO emission is dominated by the hard Comptonised component. During the transition, a change in the relative contribution of the disk and Comptonised emission was observed. The disk flux decreased while the Comptonised flux increased from non-QPO to type-B QPO. However, the total flux did not change too much in the NICER band. Our results reveal that the type-B QPO is associated with a redistribution of accretion power between the disk and Comptonised emission. When the type-B QPO appears, more accretion power is dissipated into the Comptonised region than in the disk. Our spectral fits give a hint that the increased Comptonised emission may come from an additional component that is related to the base of the jet.
We present the results of the analysis of a large database of X-ray observations of 22 galactic black-hole transients with the Rossi X-Ray timing explorer throughout its operative life for a total exposure time of ~12 Ms. We excluded persistent systems and the peculiar source GRS 1915+105, as well as the most recently discovered sources. The semi-automatic homogeneous analysis was aimed at the detection of high-frequency (100-1000 Hz) quasi-periodic oscillations (QPO), of which several cases were previously reported in the literature. After taking into account the number of independent trials, we obtained 11 detections from two sources only: XTE J1550-564 and GRO J1655-40. For the former, the detected frequencies are clustered around 180 Hz and 280 Hz, as previously found. For the latter, the previously-reported dichotomy 300-450 Hz is found to be less sharp. We discuss our results in comparison with kHz QPO in neutron-star X-ray binaries and the prospects for future timing X-ray missions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا