Do you want to publish a course? Click here

State preservation by repetitive error detection in a superconducting quantum circuit

515   0   0.0 ( 0 )
 Added by Julian Kelly
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse and quantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure - a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here, we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural precursor of the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition (QND) parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 for five qubits and a factor of 8.5 for nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger (GHZ) state. The successful suppression of environmentally-induced errors strongly motivates further research into the many exciting challenges associated with building a large-scale superconducting quantum computer.



rate research

Read More

The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noise are actively being explored. Here we experimentally protect a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the timescales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multi-qubit systems provide for quantum sensing and offers an important complement to quantum control techniques. In particular, our work opens the door for detecting minute signals in the presence of high frequency noise, where standard protocols reach their limits.
252 - J. Yu , J. C. Retamal , M. Sanz 2021
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog blocks (parametrized multiqubit operations) to outperform digital quantum computing algorithms. Our design comprises a chain of superconducting charge qubits coupled by superconducting quantum interference devices (SQUIDs). Using magnetic flux control, we can activate/deactivate exchange interactions, double excitation/de-excitations, and others. As a paradigmatic example, we present an efficient simulation of an $elltimes h$ fermion lattice (with $2<ell leq h$), using only $2(2ell+1)^2+24$ analog blocks. The proposed architecture design is feasible in current experimental setups for quantum computing with superconducting circuits, opening the door to useful quantum advantage with fewer resources.
Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of Derivative Reduction by Adiabatic Gate (DRAG) pulse shaping along with detuning of the pulses, we obtain gate errors consistently below $10^{-3}$ and leakage rates at the $10^{-5}$ level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.
Three-wave mixing in second-order nonlinear optical processes cannot occur in atomic systems due to the electric-dipole selection rules. In contrast, we demonstrate that second-order nonlinear processes can occur in a superconducting quantum circuit (i.e., a superconducting artificial atom) when the inversion symmetry of the potential energy is broken by simply changing the applied magnetic flux. In particular, we show that difference- and sum-frequencies (and second harmonics) can be generated in the microwave regime in a controllable manner by using a single three-level superconducting flux quantum circuit (SFQC). For our proposed parameters, the frequency tunability of this circuit can be achieved in the range of about 17 GHz for the sum-frequency generation, and around 42 GHz (or 26 GHz) for the difference-frequency generation. Our proposal provides a simple method to generate second-order nonlinear processes within current experimental parameters of SFQCs.
We propose a superconducting quantum circuit based on a general symmetry principle -- combinatorial gauge symmetry -- designed to emulate topologically-ordered quantum liquids and serve as a foundation for the construction of topological qubits. The proposed circuit exhibits rich features: in the classical limit of large capacitances its ground state consists of two superimposed loop structures; one is a crystal of small loops containing disordered $U(1)$ degrees of freedom, and the other is a gas of loops of all sizes associated to $mathbb{Z}_2$ topological order. We show that these classical results carry over to the quantum case, where phase fluctuations arise from the presence of finite capacitances, yielding ${mathbb Z}_2$ quantum topological order. A key feature of the exact gauge symmetry is that amplitudes connecting different ${mathbb Z}_2$ loop states arise from paths having zero classical energy cost. As a result, these amplitudes are controlled by dimensional confinement rather than tunneling through energy barriers. We argue that this effect may lead to larger energy gaps than previous proposals which are limited by such barriers, potentially making it more likely for a topological phase to be experimentally observable. Finally, we discuss how our superconducting circuit realization of combinatorial gauge symmetry can be implemented in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا